
J. Chem. Phys. 152, 024127 (2020); https://doi.org/10.1063/1.5135363 152, 024127

© 2020 Author(s).

Numerical assessment for accuracy
and GPU acceleration of TD-DMRG time
evolution schemes 

Cite as: J. Chem. Phys. 152, 024127 (2020); https://doi.org/10.1063/1.5135363
Submitted: 06 November 2019 . Accepted: 26 December 2019 . Published Online: 14 January 2020

Weitang Li , Jiajun Ren , and Zhigang Shuai 

COLLECTIONS

 This paper was selected as an Editor’s Pick

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519827791&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ec42be1e5157177578ec02e7b63d7170461d1664&location=
https://doi.org/10.1063/1.5135363
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.5135363
https://aip.scitation.org/author/Li%2C+Weitang
http://orcid.org/0000-0002-8739-641X
https://aip.scitation.org/author/Ren%2C+Jiajun
http://orcid.org/0000-0002-1508-4943
https://aip.scitation.org/author/Shuai%2C+Zhigang
http://orcid.org/0000-0003-3867-2331
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.5135363
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5135363
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5135363&domain=aip.scitation.org&date_stamp=2020-01-14


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Numerical assessment for accuracy
and GPU acceleration of TD-DMRG
time evolution schemes

Cite as: J. Chem. Phys. 152, 024127 (2020); doi: 10.1063/1.5135363
Submitted: 6 November 2019 • Accepted: 26 December 2019 •
Published Online: 14 January 2020

Weitang Li, Jiajun Ren,a) and Zhigang Shuai

AFFILIATIONS
MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry,
Tsinghua University, Beijing 100084, People’s Republic of China

a)Electronic mail: renjj@mail.tsinghua.edu.cn

ABSTRACT
The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics
for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global
propagation and compression method with the Runge-Kutta algorithm (P&C-RK), the time dependent variational principle based methods
with the matrix unfolding algorithm (TDVP-MU), and with the projector-splitting algorithm (TDVP-PS), by performing benchmarks on the
exciton dynamics of the Fenna-Matthews-Olson complex. We show that TDVP-MU and TDVP-PS yield the same result when the time step
size is converged and they are more accurate than P&C-RK4, while TDVP-PS tolerates a larger time step size than TDVP-MU. We further
adopt the graphical processing units to accelerate the heavy tensor contractions in the TD-DMRG, and it is able to speed up the TDVP-MU
and TDVP-PS schemes by up to 73 times.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5135363., s

I. INTRODUCTION

The time dependent density matrix renormalization group
(TD-DMRG) has emerged as a powerful tool to deal with many-
body chemical and physical problems.1,2 Although the DMRG is ini-
tially designed to solve the ground state of one-dimensional strongly
correlated systems,3,4 its applications are successfully extended to
dynamical properties both in the time and frequency domains,
such as the linear and nonlinear optical response of polyenes,5

polaron formation and diffusion,6–8 interconversion dynamics of
pyrazine,9–11 exciton dissociation,12 spectra of molecular aggre-
gates,13 ab initio electron dynamics,14,15 and many other topics.16–20

One of the key components in the TD-DMRG is the time evolution
scheme, which is essential to the numerical accuracy and efficiency.
The available schemes could be roughly classified into three groups.
The first group is based on globally approximating the formal prop-
agator e−iHt or e−iHt|Ψ⟩, including time-evolving block decimation
(TEBD),21–23 WI,II method,24 Runge-Kutta,13,25 Chebyshev expan-
sion,26 Krylov subspace25,27 methods, and split operator method on

the grid basis.9 The same feature shared in these schemes is that in
each time step the wavefunction is first propagated as a whole glob-
ally and then compressed. The second group is more inspired by the
original DMRG, which is formulated in the local renormalized space,
and the basis is adapted by the averaged reduced density matrix. The
representatives are the time step targeting method (TST)28 and some
related variants.14,29 The third group is based on the time dependent
variational principle (TDVP).30 Depending on the different ways
to derive the equations of motion (EOMs), this group includes the
original method with fixed gauge freedom31 and the more recent
projector-splitting method (PS) from a tangent space view.32 Among
the above evolution schemes, all schemes can be directly applied to
models with long-range interactions except TEBD, which requires
modifications such as the unitary transformation of the Hamiltonian
in the system-reservoir quantum models33 and introduction of swap
gates.34 In addition, the global evolution scheme is the most straight-
forward one when the modern framework of the matrix product
state/matrix product operator (MPS/MPO) is investigated, while the
PS scheme seems to have become the most popular choice as it has
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been widely employed in the recent articles10,11,17–20,35 and imple-
mented in a number of TD-DMRG packages.36,37 Although many
evolution schemes have been applied extensively to the simulation of
quantum dynamics in both chemistry and physics, a pragmatic anal-
ysis of their relative accuracy and efficiency has not been reported
yet.

High performance computing for DMRG algorithms has
attracted much interest in recent years, including parallelization
strategies with the message passing interface (MPI),38 open multi-
processing (OpenMP), and hybrid MPI/OpenMP39 on multiple cen-
tral processing units (CPUs). Meanwhile, the application of graph-
ical processing units (GPUs) in computational chemistry has also
drawn much attention in the past decade due to the tardy improve-
ment of CPUs and the more and more vibrant GPU software
ecosystem, including electronic structure calculation,40–43 classical/
ab initio molecular dynamics,44,45 and open system quantum
dynamics.46,47 To the best of our knowledge, the only attempt to
employ GPUs in the DMRG was made by Nemes et al. in 2014.48

They came up with a smart implementation exploiting both the CPU
and GPU which speeds up the Davidson diagonalization part in the
DMRG algorithm by 2–5 times. Despite their efforts, how GPUs
can accelerate TD-DMRG algorithms and which evolution scheme
is more suitable remain unclear.

To benchmark the performance of different TD-DMRG time
evolution schemes, a proper model should be chosen. In this work,
we focus on the vibronic coupling system represented by the Fenna-
Matthews-Olson (FMO) complex from green sulfur bacteria. It is
an extremely popular system for both experimental and theoret-
ical studies of energy transfer in photosynthesis.49,50 The FMO
model has become a “guinea pig” for comparing different com-
putational methods,18 and its exciton dynamics has been studied
by many numerically exact methods, including the quasiadi-
abatic propagator path integral (QUAPI),51 hierarchical equa-
tions of motion (HEOM),52,53 multilayer multiconfiguration time-
dependent Hartree (ML-MCTDH),54,55 TD-DMRG,16,18 etc.

In this paper, we select three time evolution schemes in
the TD-DMRG to simulate the exciton dynamics of the 7-site
FMO model, including the global propagation and compression
scheme with the classical 4th order Runge-Kutta algorithm (P&C-
RK4), TDVP with the advanced matrix unfolding regularization
scheme (TDVP-MU), and TDVP with the projector-splitting algo-
rithm (TDVP-PS). We first study the relative accuracy of the three
schemes on the FMO model and then set out to explore the
CPU-GPU heterogeneous computing to accelerate the TD-DMRG
algorithms.

II. METHODOLOGICAL APPROACHES
A. MPS representation and TD-DMRG algorithms

In the language of matrix product states (MPSs),56 a quantum
state |Ψ⟩ under a certain basis |σ1σ2⋯σN⟩, where |σi⟩ is the basis for
each degree of freedom (DOF) and is assumed to be orthonormal,
can be represented as the product of a matrix chain, known as an
MPS, as follows:

∣Ψ⟩ = ∑
{a},{σ}

Aσ1
a1A

σ2
a1a2⋯A

σN
aN−1 ∣σ1σ2⋯σN⟩. (1)

Aσi
ai−1ai are the matrices in the chain connected by indices ai. {⋅} in

the summation represents the contraction of the respective con-
nected indices, and N is the total number of DOFs in the sys-
tem. The dimension of ai is called the (virtual) bond dimension
denoted as MS or |ai|, while the dimension of σi is called the phys-
ical bond dimension denoted as d. The graphical representation of
an MPS is shown in Fig. 1(a). The many-body renormalized basis is
defined as

∣ai[1 : i]⟩ = ∑
{a},{σ}

Aσ1
a1A

σ2
a1a2⋯A

σi
ai−1ai ∣σ1⋯σi⟩, (2)

∣aj[ j + 1 : N]⟩ = ∑
{a},{σ}

Aσj+1
ajaj+1⋯A

σN
aN−1 ∣σj+1⋯σN⟩, (3)

where [1: i] and [j + 1: N] represent that the renormalized bases
are defined from the left and right side, respectively. Hence, Aσn

an−1an
could be regarded as the coefficient matrix on the space spanned
by |an−1[1: n − 1]⟩ ⊗ |σn⟩ ⊗ |an[n + 1: N]⟩. However, in general,
the renormalized basis is not necessary to be orthonormal, and the
overlap matrix between them is defined as

S[1 : i]aia′i = ⟨ai[1 : i]∣a′i[1 : i]⟩, (4)

S[ j + 1 : N]aja′j = ⟨aj[ j + 1 : N]∣a′j[ j + 1 : N]⟩. (5)

The matrix product representation for a wavefunction is not
unique in that inserting an identity matrix I = GG−1 into the neigh-
boring matrices ⋯AσiAσi+1⋯ will obtain the same wavefunction but
with different local matrices ⋯A′σiA′σi+1⋯ = ⋯(AσiG)(G−1Aσi+1)⋯

= ⋯AσiAσi+1⋯. Therefore, gauge conditions could be applied to elim-
inate the parameterization redundancy of an MPS. Among them, the
“mixed/left/right-canonical” gauge condition is usually adopted for
convenience. A “mixed-canonical” MPS with the gauge center at site
n is written as

∣Ψ⟩ = ∑
{l},{r}{σ}

Lσ1
l1 L

σ2
l1 l2⋯L

σn−1
ln−2 ln−1

Cσn
ln−1rn

×Rσn+1
rnrn+1⋯R

σN
rN−1 ∣σ1σ2⋯σN⟩, (6)

where Lσili−1 li
and Rσj

rj−1rj satisfy

∑
σi ,li−1

Lσi∗li−1 l′i
Lσili−1 li = δl′i li , (7)

∑
σj ,rj

Rσj∗
r′j−1rj

Rσj
rj−1rj = δr′j−1rj−1 . (8)

Here, Lσi(Rσj)∗ represents the conjugate of Lσi(Rσj).

FIG. 1. The graphical representation of (a) an MPS in Eq. (1) and (b) an MPO in
Eq. (11) with N = 7.
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With Eqs. (7) and (8), the renormalized basis fulfills the
orthonormal relations S[1 : i]li l′i = δli l′i (i = 1, 2, . . ., n − 1) and
S[ j+ 1 : N]rjr′j = δrjr′j (j = n, n + 1, . . ., N − 1). When the gauge center
n is at the right(left)-most site, the MPS is called the left(right)-
canonical state. With the “mixed/left/right-canonical” condition, the
only redundancy left is that G is unitary. If we further decomposeCσn

by QR decomposition,

Cσn
ln−1rn

reshape
→ Cσn ln−1 ,rn

QR
= ∑

ln

Lσn ln−1 ,lnDln ,rn
reshape
→ ∑

ln

Lσnln−1 lnDlnrn , (9)

Lσn fulfills the relation in Eq. (7) and Dlnrn is also a coefficient matrix
defined between sites n and n + 1 on space |ln[1: n]⟩ ⊗ |rn[n + 1:
N]⟩. Afterwards, Dlnrn is combined with Rσn+1

rnrn+1 to obtain Cσn+1
lnrn+1

= ∑rn DlnrnR
σn+1
rnrn+1 , and apparently, the gauge center is moved one site

to the right. The reverse process to move the gauge center to the left
could be carried out in a similar way as Eq. (9) while QR is replaced
with RQ decomposition. More generally, a canonical MPS with the
gauge center at n as Eq. (6) could be prepared by performing QR
decomposition from site 1 to n − 1 sequentially and RQ decom-
position from site N to n + 1 sequentially on any MPS, which is
called canonicalization. In the following paper, QR and RQ are not
distinguished for simplicity.

If the QR decomposition in Eq. (9) is replaced with singular
value decomposition (SVD),

Cσn
ln−1rn

reshape
→ Cσn ln−1 ,rn

SVD
=

k

∑
s=1

Uσn ln−1 ,sΛssV†
s,rn

reshape
→

k

∑
s=1

Uσn
ln−1sΛssV†

srn ≈
MS<k

∑
ln=1

Lσnln−1 lnΛln lnV
†
lnrn

. (10)

Here, Λ is a real diagonal matrix with elements ordered from large
to small Λ11 ≥ Λ22 > ⋯ ≥ Λkk ≥ 0 (k = min[|σn|⋅|ln−1|, |rn|]) and
∑s Λ

2
ss = 1 if |Ψ⟩ is normalized. Uσn fulfills the relation in Eq. (7).

If we retain all Λss (MS = k) and move the gauge center to the right
with Cσn+1

lnrn+1
= ∑ln ,rn Λln lnV

†
lnrn

Rσn+1
rnrn+1 , the wavefunction is not changed

and SVD plays the same role as QR in canonicalization but with a
little bit higher cost. However, if we only retain the largest MS terms
(MS < k) to obtain C̃σn+1

lnrn+1
, C̃σn+1

lnrn+1
could be a good approximation to

Cσn+1
lnrn+1

with a smaller bond dimension. The loss of accuracy due to
this truncation could be measured by ε = ∑k

s=MS+1 Λ
2
ss if |Ψ⟩ is nor-

malized. With this algorithm, a left(right)-canonical MPS |Ψ⟩ could
be “compressed” to ∣Ψ̃⟩ by successive approximate SVDs from site N
to 1 (site 1 to N). At each local step of the compression, two trun-
cation criteria are commonly used (i) a fixed predefined MS and (ii)
adaptive MS with all Λss larger than predefined ζ retained.

Apart from canonicalization and compression, several other
operations are usually met within the MPS algorithms, including
Ô|Ψ⟩ and |Ψ⟩ + |Φ⟩. Similar to the MPS, a common quantum oper-
ator could be expressed as a matrix product operator (MPO) as
follows:56,57

Ô = ∑
{w},{σ},{σ′}

Wσ′1 ,σ1
w1 Wσ′2 ,σ2

w1w2⋯W
σ′N ,σN
wN−1

× ∣σ′1σ
′

2⋯σ
′

N⟩⟨σNσN−1⋯σ1∣. (11)

The graphical representation of an MPO is shown in Fig. 1(b). With
the local matrix representation of the wavefunction and operator
in Eqs. (1) and (11), Ô|Ψ⟩ (MPO × MPS) could be calculated by
contracting Wσ′i ,σiAσi locally as follows:

Ô∣Ψ⟩ = ∑
{w,a},{σ′}

A′σ
′
1
{w,a}1

A′σ
′
2
{w,a}1{w,a}2

⋯A′σ
′
N
{w,a}N−1

∣σ′1σ
′

2⋯σ
′

N⟩, (12)

where
A′σ

′
i
{w,a}i−1{w,a}i

=∑
σi
Wσ′i ,σi

wi−1wiA
σi
ai−1ai . (13)

Suppose the bond dimensions of the original MPS and the MPO are
MS and MO, respectively, then the new state |ÔΨ⟩ has a bond dimen-
sion MOMS. |Ψ⟩ + |Φ⟩ (MPS + MPS) is constructed by merging the
local matrices [Aσi ,Bσi] block-diagonally,

∣Ψ⟩ + ∣Φ⟩ = ∑
{a,b},{σ}

A′σ1
{a,b}1

A′σ2
{a,b}1{a,b}2

⋯A′σN
{a,b}N−1

∣σ1σ2⋯σN⟩, (14)

where

A′σ1 = [Aσ1Bσ1], A′σi = [
Aσi 0
0 Bσi] (i = 2, 3⋯N − 1),

A′σN = [
AσN

BσN]. (15)

Suppose the bond dimensions of the original two MPSs are MSA and
MSB , respectively, then the new state |Ψ + Φ⟩ has a bond dimension
MSA + MSB .

In Subsections II A 1 and II A 2, we present the ideas
and the algorithms of three different TD-DMRG time evolution
schemes adopted in our benchmark calculations afterwards: P&C-
RK4, TDVP-MU, and TDVP-PS.

1. Schemes based on global propagation
and compression

The propagation and compression (P&C) scheme is a global
time evolution scheme benefiting from the modern MPS/MPO rep-
resentation of DMRG wavefunctions and operators. If |Ψ(t)⟩ and
the time derivative ∣Ψ̇(t)⟩ are explicitly known (according to the
Schrödinger equation, the time derivative is −iĤΨ in atomic units),
any ordinary differential equation (ODE) integrator for the initial
value problem (IVP), such as the classical 4th order Runge-Kutta
algorithm (RK4) we used in our former work,13 could be applied to
obtain the MPS of the next time step |Ψ(t + τ)⟩. The equations of
RK4 are

∣k1⟩ = −iĤ(t)∣Ψ(t)⟩,

∣k2⟩ = −iĤ(t + τ/2)(∣Ψ(t)⟩ +
1
2
τ∣k1⟩),

∣k3⟩ = −iĤ(t + τ/2)(∣Ψ(t)⟩ +
1
2
τ∣k2⟩),

∣k4⟩ = −iĤ(t + τ)(∣Ψ(t)⟩ + τ∣k3⟩),

∣Ψ(t + τ)⟩ = ∣Ψ(t)⟩ +
1
6
τ(∣k1⟩ + 2∣k2⟩ + 2∣k3⟩ + ∣k4⟩).

(16)

Each |ki⟩ is represented by an MPS, and Ĥ(ti) is represented
by an MPO. Therefore, only two types of operations including
MPO ×MPS [Eq. (13)] and MPS + MPS [Eq. (14)] exist in Eq. (16).
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After each operation, the new MPS such as |k1⟩ = −iĤ(t)|Ψ(t)⟩ will
have a larger virtual bond dimension, which should be compressed
using the algorithm based on Eq. (10) for the further operations. It
is worth mentioning that as the new MPS is not canonical, canoni-
calization should be carried out before the actual compression.

The procedure of P&C-RK4 described above involves Ĥ|Ψ⟩
(“MPO × MPS”) scaling at O(M2

SM
2
Od

2
) for each site (labeled as

“Ĥ|Ψ⟩”), “MPS + MPS,” which does not require intensive com-
putation and MPS compression. The compression consists of four
kinds of operations [two for canonicalization in Eq. (9) and two
for compression in Eq. (10)], namely, QR decomposition of ten-
sors on each site (labeled as “QR”), matrix multiplication to absorb
the decomposed coefficients (labeled as “MatMul-QR”), and the
SVD counterparts (labeled as “SVD” and “MatMul-SVD”). “QR”
and “MatMul-QR” both scale at O(M3

SM
3
Od), while their SVD

counterparts scale at O(min(M3
SM

2
Od,M3

SMOd2
)) for “SVD” and

O(M3
SM

2
Od) for “MatMul-SVD” because compression reduces the

bond dimension from MOMS to MS during the sweep. Thus, the
bottleneck of P&C-RK4 is the canonicalization, and the scaling of
the method in a single time step is O(NM3

SM
3
Od).

Compared to the local evolution scheme such as TST,28 P&C
could exactly calculate the operation of a high order Hamiltonian
such as Ĥn|Ψ⟩ and it is natural to increase the bond dimension with
entanglement during time evolution. However, though P&C is in
principle a general evolution scheme for the TD-DMRG, it prefers
Hamiltonian whose MPO is straightforward to construct and has a
small bond dimension MO, such as the Frenkel-Holstein type model
whose MO is in a linear relationship to the number of electronic
states.13 With regard to the time step size, the error of P&C does
not have a monotonic relationship with the time step and there is
an optimal time step depending on the system as discussed in the
previous studies.13,14 A smaller time step will improve the accuracy
of the RK4 integrator but lead to more MPS compressions and then
deteriorate the whole accuracy.

2. Schemes based on the time dependent
variational principle

The Rayleigh-Ritz variational principle is widely used in
finding an approximate ground state in the time independent
Schrödinger equation. Similarly, the time dependent variational
principle (TDVP) also provides a strong tool to find an optimal time
dependent wavefunction if the wavefunction ansatz and the initial
state are known. The Dirac-Frenkel TDVP is30,58

⟨δΨ∣i
∂

∂t
− Ĥ∣Ψ⟩ = 0. (17)

It has been proved that the TDVP could strictly conserve the norm
of the wavefunction and the total energy in the real-time propaga-
tion,58 which is believed to be essential for long-time dynamics. In a
geometric fashion, the TDVP could be understood as an orthogonal

projection of −iĤ|Ψ⟩ onto the tangent space of |Ψ(t)⟩ at the current
time,

∂∣Ψ⟩
∂t
= −iP̂Ĥ∣Ψ⟩, (18)

where P̂ is the projector constructed by the orthonormal vectors in
the tangent space. For a general MPS in Eq. (1), the tangent space
projector could be defined as

P̂ =
N

∑
i=1

P̂[1 : i−1]⊗ Îi⊗ P̂[i+1 : N]−
N−1

∑
i=1

P̂[1 : i]⊗ P̂[i+1 : N], (19)

where

P̂[1 : i] = ∑
ai ,a′i

∣a′i[1 : i]⟩S[1 : i]−1
a′i ai
⟨ai[1 : i]∣, (20)

P̂[i + 1 : N] = ∑
ai ,a′i

∣a′i[i + 1 : N]⟩S[i + 1 : N]−1
a′i ai
⟨ai[i + 1 : N]∣, (21)

Îi =∑
σi
∣σi⟩⟨σi∣, (22)

P̂[1 : 0] = P̂[N + 1 : N] = 1. (23)

The inversion of the overlap matrix S−1 accounts for the
nonorthogonality of the renormalized basis, and the “−” terms are to
eliminate the parameterization redundancy.31,59 The graphical rep-
resentation of the projector is shown in Fig. 2. In the literature, there
are two different time evolution schemes based on the TDVP. They
differ in choosing the specific gauge condition of the MPS and in
solving Eq. (18), which will be discussed in detail in the following.

a. TDVP-MU In the first TDVP evolution scheme, the gauge
freedom of the MPS is fixed. For convenience, the projector in
Eq. (19) could be transformed to the following equation [Eq. (24)] by
combining the neighboring “+” term and “−” term together except
one “+” term with i = n:

P̂ = P̂[1 : n − 1]⊗ În ⊗ P̂[n + 1 : N] +
n−1

∑
i=1

Q̂[1 : i]⊗ P̂[i + 1 : N]

+
N

∑
i=n+1

P̂[1 : i − 1]⊗ Q̂[i : N], (24)

where

Q̂[1 : i] = ∑
ai−1 ,a′i−1 ,σi ,σ′i

∣a′i−1[1 : i − 1]σ′i⟩⟨ai−1[1 : i − 1]σi∣

⋅ (S[1 : i − 1]−1
a′i−1ai−1

δσ′i σi −∑
a′i ,ai

Aσ′i
a′i−1a

′
i
S[1 : i]−1

a′i ai
Aσi∗
ai−1ai),

(25)

FIG. 2. The graphical representation of
the tangent space projector in Eq. (19)
with N = 7.
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Q̂[i : N] = ∑
ai ,a′i ,σi ,σ

′
i

∣a′i[i + 1 : N]σ′i⟩⟨ai[i + 1 : N]σi∣

⋅ (S[i + 1 : N]−1
a′i ai

δσ′i σi − ∑
a′i−1 ,ai−1

Aσ′i
a′i−1a

′
i
S[i : N]−1

a′i−1ai−1
Aσi∗
ai−1ai).

(26)

This type of projector or the corresponding tangent space vec-
tors were first proposed by Haegeman et al.31 in the TD-DMRG and
restated by Wouters et al.59 to derive several post-DMRG methods
for the ground state and excited states.

Equations (25) and (26) could be further simplified by adopt-
ing a specific gauge condition, and then, some overlap matrices turn
to identity. Assuming that the MPS is left-canonical with the gauge
center at site N, S[1: i] is reduced to I and it is most convenient to
set n = N in Eq. (24). Inserting the simplified projector into Eq. (18)
yields

i
∂Cσ′N

l′N−1

∂t
= ∑

σ′′N ,l′′N−1

H[N]l′N−1σ
′
N ,l′′N−1σ

′′
N
Cσ′′N
l′′N−1

, (27)

i
∂Lσ

′
i
l′i−1 l

′
i

∂t
= ∑

li−1 ,σi
(δl′i−1 li−1δσ′i σi − p[i]l′i−1σ

′
i ,li−1σi)

×∑
li

S[i + 1 : N]−1
l′i li

× ∑
l′′i−1 ,σ′′i ,l′′i

H[i]li−1σi li ,l′′i−1σ
′′
i l
′′
i
Lσ
′′
i
l′′i−1 l

′′
i

, (28)

where

H[i]l′i−1σ
′
i l
′
i ,li−1σi li = ∑

{w}
h[1 : i − 1]{l′ ,w,l}i−1W

σ′i ,σi
wi−1wi

×h[i + 1 : N]{l′ ,w,l}i , (29)

h[1 : i − 1]{l′ ,w,l}i−1 = ∑
{l′},{w},{l}

h[1]{l′ ,w,l}1⋯

×h[i − 1]{l′ ,w,l}i−2 ,{l′ ,w,l}i−1 , (30)

h[i + 1 : N]{l′ ,w,l}i = ∑
{l′},{w},{l}

h[i + 1]{l′ ,w,l}i ,{l′ ,w,l}i+1⋯

×h[N]{l′ ,w,l}N−1 , (31)

h[i]{l′ ,w,l}i−1 ,{l′ ,w,l}i = ∑
σi ,σ′i

Aσ′i ∗
l′i−1 l

′
i
Wσ′i ,σi

wi−1wiA
σi
li−1 li (A = L or C), (32)

p[i]l′i−1σ
′
i ,li−1σi =∑

li

Lσ
′
i
l′i−1 li

Lσi∗li−1 li . (33)

Similar equations can be derived for the right/mixed-canonical
MPS. With Eqs. (28) and (33), it is straightforward to prove that
∑li−1 ,σi L

σi∗
li−1 li

∂
∂tL

σi
li−1 l′i
= 0 and then

∂

∂t
(∑
li−1 ,σi

Lσi∗li−1 liL
σi
li−1 l′i
) = 0, (34)

which ensures that the left-canonical condition preserves during the
time evolution formally. Though in practical numerical calculation
with a finite time step the relation in Eq. (34) would not be rigor-
ously fulfilled, this problem is not severe with a proper time step in
our experience. Otherwise, the more general equations in Eq. (24)
which have already considered the nonorthogonality of the left and

right renormalized basis should be used. In addition, it could be
proved that ∂

∂t S[1 : i] = 0 (i = 1, 2, . . . ,n − 1) and ∂
∂t S[ j : N] = 0

(j = n + 1,n + 2, . . . ,N).
Equations (27) and (28) together form a set of coupled nonlin-

ear equations that are very similar to the standard EOMs of (ML-)
MCTDH.60–62 To integrate these equations, we borrow ideas called
the variable mean field (VMF) and constant mean field (CMF) from
the MCTDH community.61,63 The VMF employs an all-purpose
integrator to directly solve the coupled equations. While in the CMF,
it is assumed that H[i] and S[i + 1: N] generally change much slower
in time than the local matrices CσN and Lσi . As a result, during the
integration of Eqs. (27) and (28), one may hold the “mean field”
H[i] and S[i + 1: N] constant for τ and evolve only the local matrix
with a time step smaller than τ. Hence, the CMF is more efficient
yet less accurate than the VMF. In this work, we use a second order
CMF with a midpoint scheme in which Lσi(0) and CσN (0) are inte-
grated to Lσi(τ) and CσN (τ) with the “mean field” constructed by
Lσi(τ/2) and CσN (τ/2). In the VMF, the adaptive Dormand-Prince’s
5/4 Runge-Kutta method (RK45) is adopted to integrate Eqs. (27)
and (28), while in CMF, since Eq. (27) is linear, it is integrated by the
Krylov subspace method instead.

Another aspect should be concerned is that the inversion of
S would be unstable numerically if some eigenvalues of S are very
small. This problem will be severe when the state is weakly corre-
lated (such as a Hartree product state which is usually an initial state)
and MS is much larger than what is required. To some extent, this
instability problem makes this evolution scheme paradoxical in that
large MS should in principle push the result to a numerically exact
limit, but in fact, it deteriorates it. The same problem also arises
in (ML)-MCTDH, where in order to make the EOMs more “well-
behaved,” S is usually replaced with a regularized overlap matrix S̃
as follows:61

S̃ = S + εe−S/ε. (35)

Here, ε is a small scalar commonly from 10−8 to 10−14. More
recently, an improved regularization scheme based on the matrix
unfolding (MU) of the coefficient matrix by SVD in (ML-)MCTDH
is proposed by Meyer and Wang, which has been proved to make
the time integration more accurate and robust.64,65 The same idea is
adopted here to integrate Eq. (28), giving the name of the scheme as
“TDVP-MU.” When calculating the overlap matrix S[i + 1 : N]−1

a′i ai
,

the gauge center is moved to the (i + 1)th site and the matrix at this
site is further decomposed by SVD,

∣li[i + 1 : N]⟩ = ∑
{l},{σ}

Lσi+1
li li+1
⋯LσN−1

lN−2 lN−1
CσN
lN−1
∣σi+1⋯σN⟩

= ∑
{r},{σ}

UliriΛririR
σi+1
riri+1⋯R

σN−1
rN−2rN−1R

σN
rN−1

× ∣σi+1⋯σN⟩, (36)

where |ri| equals |li|. Thus, the overlap matrix S[i + 1: N] and its
inversion could be expressed as U∗Λ2UT and U∗Λ−2UT , respec-
tively. The Hamiltonian matrix in Eq. (29) is also reconstructed. For
the site from i + 1 to N, the matrix Aσi in Eq. (32) is replaced with
matrix Rσi in Eq. (36), and then, Eq. (28) with the matrix unfolding
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algorithm becomes

i
∂Lσ

′
i
l′i−1 l

′
i

∂t
= ∑

li−1 ,σi
(δl′i−1 li−1δσ′i σi − p[i]l′i−1σ

′
i ,li−1σi)

× ∑
ri ,r′i ,li

[U∗l′i r′iΛ
−1
r′i r
′
i
Λ−1
r′i r
′
i
UT

r′i li
]U∗liriΛriri

× ∑
l′′i−1 ,σ′′i ,l′′i ,r′′i

H[i]li−1σiri ,l′′i−1σ
′′
i r
′′
i
Λr′′i r

′′
i
UT

r′′i l
′′
i
Lσ
′′
i
l′′i−1 l

′′
i

. (37)

The expression inside “[⋯]” is S[i + 1: N]−1. The key point of
this new regularization scheme is that the underlined part could be
contracted first, which is δr′i ri . Thus, only the singular matrix Λr′i r

′
i

instead of Λ2
r′i r
′
i

should be regularized as follows:

Λ̃r′i r
′
i
= Λr′i r

′
i

+ ε1/2e−Λr′i r
′
i
/ε1/2

. (38)

The power 1/2 here is for consistency with the original regular-
ization scheme [Eq. (35)], and Λr′′i r

′′
i

in Eq. (37) is untouched in
order to be minimally invasive, as stated in Refs. 64 and 65. In this
work, we choose ε = 10−10 unless otherwise stated. Although in the
matrix unfolding scheme it is necessary to perform canonicalization
on the environmental part |li[i + 1: N]⟩, the gauge condition of the
MPS that is evolved remains unchanged. In principle, the tangent
space is strictly the same no matter where the gauge center is, as
shown in Eq. (24) where n is arbitrary. Practically, the difference
comes from the regularization on different parts of the wavefunc-
tion, but as we will show below, the regularization only introduces
a minor error in the short time regime with a proper regularization
parameter. Therefore, in our implementation, the MPS is always left-
canonical and we expect the effect of the changing gauge center to be
negligible.

The complexity analysis of the TDVP-MU scheme with the
VMF and CMF is as follows: Note that in the TD-DMRG, it is
necessary to contract small matrices one by one instead of explic-
itly constructing the large tensors.38,56 The VMF and CMF both
require the calculation of environment matrices h[1: i − 1] and
h[i + 1: N] scaling at O(M2

SM
2
Od

2 + M3
SMOd) (labeled as “Get

Env”), SVD of the gauge center with the subsequent matrix mul-
tiplication scaling at O(M3

Sd) in Eq. (36) (labeled as “SVD” and
“MatMul-SVD”), and the calculation of the time derivative in
Eqs. (27) and (37) (labeled as “Deriv”). Evaluation of the time
derivatives contains a number of matrix multiplications, and the
overall scaling is O(M2

SM
2
Od

2 + M3
SMOd + M3

Sd
2
), where the first

two terms and the last term correspond to the contraction of H[i]
and (I − p[i]), respectively. Thus, the total scaling in the VMF
is O(N(M2

SM
2
Od

2 + M3
SMOd + M3

Sd
2
)), while in the CMF, the total

scaling for a single step is O(Nf (M2
SM

2
Od

2 + M3
SMOd + M3

Sd
2
)),

where f is the number of steps required for the propagation of each
local site within τ. Although at first glance the CMF is more time-
consuming than the VMF, a much larger step size is possible for
the CMF which reduces the time cost spent on decomposing the
matrix and constructing the environment, compensating the effect
of the factor f. This time saving in the CMF is important in MCTDH
in that constructing the environment involves a contraction of the
high order coefficient matrix.58,61,63 However, in the MPS context,

such an advantage is not prominent because all matrices including
the coefficient matrix CσN are of the same size. As a result, con-
structing the environment has a similar complexity as calculating the
derivatives.

b. TDVP-PS The second evolution scheme based on the
TDVP is called projector-splitting (PS). The idea of PS is that the
tangent space projector in Eq. (19) is invariant under different gauge
conditions. More specifically, after canonicalization of a general
MPS in Eq. (1) from site N to i + 1, |ri[i + 1: N]⟩ becomes the right-
hand orthonormal renormalized basis, which is related to |ai[i + 1:
N]⟩, by

∣ai[i + 1 : N]⟩ =∑
ri
Dairi ∣ri[i + 1 : N]⟩. (39)

The matrix D is an upper triangular matrix in RQ decomposi-
tion after the canonicalization described in Eq. (9). Therefore, the
overlap matrix S[i + 1: N] equals D∗DT and the projector P̂[i
+ 1 : N] in Eq. (21) defined for a general noncanonical MPS is
transformed to

P̂[i + 1 : N] =∑
r′i ,ri

∣r′i [i + 1 : N]⟩
⎡
⎢
⎢
⎢
⎢
⎣

∑
a′i ,ai

DT
r′i a
′
i
(D∗DT

)
−1
a′i ai

D∗airi

⎤
⎥
⎥
⎥
⎥
⎦=δr′i ri

× ⟨ri[i + 1 : N]∣

=∑
ri
∣ri[i + 1 : N]⟩⟨ri[i + 1 : N]∣. (40)

A similar result can be obtained for P̂[1 : i] as follows:

P̂[1 : i] =∑
li

∣li[1 : i]⟩⟨li[1 : i]∣. (41)

On the one hand, this definition of the tangent space projec-
tor does not contain any inversion operations of the overlap matrix,
which seems to be a remarkable improvement over the first defini-
tion in Eqs. (20) and (21). On the other hand, since the gauge is not
fixed in different terms of this projector, the integration algorithm
described in Sec. II A 2 a could not be directly applied. Lubich and
Haegeman et al. proposed to use a symmetric second order Trot-
ter decomposition to split the formal propagator into the individual
terms,32,66

e−iP̂Ĥτ
= [

N−1

∏
i=1

e−iP̂[1:i−1]⊗Îi⊗P̂[i+1:N]Ĥτ/2
⋅ eiP̂[1:i]⊗P̂[i+1:N]Ĥτ/2

]

⋅ e−iP̂[1:N−1]⊗ÎN Ĥτ

⋅ [
1

∏
i=N−1

eiP̂[1:i]⊗P̂[i+1:N]Ĥτ/2
⋅ e−iP̂[1:i−1]⊗Îi⊗P̂[i+1:N]Ĥτ/2

]

+ O(τ3
). (42)

Based on the propagator in Eq. (42), a single step of time evolution
consists of a left-to-right sweep and a subsequent right-to-left sweep
each with step size τ/2. Taking the left-to-right sweep as an example,
the matrix at the gauge center Cσi

li−1ri
is first evolved forward in time

by applying the projector P̂[1 : i − 1]⊗ Îi ⊗ P̂[i + 1 : N] as follows:

i
∂Cσ′i

l′i−1r
′
i

∂t
= ∑

li−1 ,σi ,ri
H[i]l′i−1σ

′
i r
′
i ,li−1σiriC

σi
li−1ri , (43)
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where H[i] and the ingredients h[1: i − 1], h[i + 1: N], and h[i] all
have the same definitions as in Eqs. (29)–(32) except that the Aσi in
Eq. (32) is replaced with Lσi or Rσi accordingly. Then, the evolved
matrix Cσi

li−1ri
is decomposed by QR as Eq. (9) to obtain the left-

canonical matrix Lσili−1 li
and the coefficient matrix Dliri . Dliri is evolved

backward in time by applying the projector P̂[1 : i]⊗ P̂[i + 1 : N] as
follows:

i
∂Dl′i r

′
i

∂t
= ∑

li ,wi ,ri

h[1 : i]{l′ ,w,l}ih[i + 1 : N]{r′ ,w,r}iDliri . (44)

Afterwards, the gauge center is moved to site i + 1 by contracting
the evolved Dliri and Rσi+1

riri+1 together to obtain Cσi+1
liri+1
= ∑ri DliriR

σi+1
riri+1 .

Following the procedure above, the sweep continues until all the
individual projectors in Eq. (42) are applied. Inspired by the original
two-site DMRG algorithm, it is also possible to formulate TDVP-PS
into a two-site algorithm so that the bond dimension could grow
up adaptively.11,32 However, considering the two-site algorithm is
much more expensive than the one-site algorithm both in the tensor
contraction and QR decomposition, we use the one-site algorithm
described above in this paper.

In principle, solving Eqs. (43) and (44) could be accomplished
by any ODE integrator such as the RK45 algorithm we use in TDVP-
MU. However, since they are linear equations, the Krylov subspace
method (the Lanczos algorithm for the Hermitian operator here)
is preferred as it is unitary and is considered to be better than the
explicit time-stepping integrators for the matrix exponential oper-
ator.32,67 In our calculation, the dimension of the Krylov subspace
is adaptive and the Lanczos iteration continues until |Ψ(t + τ)⟩
converges.

TDVP-PS has a similar computational complexity as TDVP-
MU (CMF) except for the calculation of derivatives. With sim-
pler EOMs in Eqs. (43) and (44), the calculation of the derivative
for forward evolution scales at O(M2

SM
2
Od

2 + M3
SMOd) (labeled as

“Deriv-Forward”) and for backward evolution it scales at O(M3
SMO)

(labeled as “Deriv-Backward”). Therefore, the total scaling for a sin-
gle step is O(Nf (M2

SM
2
Od

2 + M3
SMOd)), where f represents the num-

ber of Krylov subspace vectors. Besides calculating the derivatives,
the Krylov subspace method also includes other matrix operations
of small size such as calculating the {α} and {β} matrix elements with
the Lanczos three-term recurrence relation68 and diagonalizing the
tridiagonal Hamiltonian in the subspace (labeled as “Krylov”). Other
labels for TDVP-PS are the same with that of TDVP-MU.

In summary, since the TDVP-MU scheme and the TDVP-PS
scheme are both based on the time dependent variational principle,
|Ψ(t)⟩ should be the same if not considering the numerical error.
Additionally, both the schemes require defining a fixed MS a priori,
and an additional renormalized basis should be constructed smartly
to complement the empty MPS space if the initial state is weakly
correlated. It is worth noting that the TDVP provides a determin-
istic wavefunction path during the time evolution determined by
tangent space projections with an infinitesimal time step, which is
locally optimal. As discussed in a recent review,2 the TDVP path suf-
fers from the projection error due to the restricted bond dimension
MS and it may not be the globally optimal path in some models. If
this TDVP path is the target in the time integration or the projection
error is smaller than the time integration error with a sufficiently
large MS, the error of these two TDVP-based schemes will have a

monotonic relationship with the time step size. The main difference
lies in that TDVP-MU would introduce a minor artificial regular-
ization, while TDVP-PS is inherently free of it. We also note that
TDVP-PS has already been implemented in MCTDH recently.69–71

B. CPU-GPU heterogeneous computing
In the TD-DMRG algorithms described above, the hotspots

are usually the tensor contractions and the matrix decompositions.
GPUs are well suitable for the former not for the latter. Therefore,
we adopt a CPU-GPU heterogeneous computing strategy. We store
the matrices in the GPU memory instead of the host memory, and in
most cases, we call cuBLAS to manipulate them. When doing matrix
decomposition, we first transfer the matrix from the GPU memory
to the host memory and then use a single CPU core to complete the
decomposition, and in the end, we copy the matrix back. The over-
head caused by data transfer is not negligible, which we believe could
be avoided by a smarter implementation because GPUs are able to
run computation and data transfer at the same time.

For comparison, multicore CPU calculation is also bench-
marked. Here, we only consider the simplest strategy of CPU par-
allelism, which is breaking up the dense matrix computations into
sub-blocks performed automatically by the standard linear algebra
libraries such as the Intel® Math Kernel Library in our case.

C. Computational details of the FMO model
The widely used Frenkel-Holstein Hamiltonian72,73 to describe

the 7-site FMO model is that

Ĥ =∑
m
Ema†

mam + ∑
m≠n

Jmna†
man +∑

mλ
ωmλ(b

†
mλbmλ +

1
2
)

+∑
mλ

gmλωmλ(b
†
mλ + bmλ)a

†
mam,

(45)

where a†
m(am) is the exciton creation (annihilation) operator on the

mth site whose local excitation energy is Em, Jmn is the Coulomb
interaction between the mth and nth site, and b†

mλ(bmλ) is the
phonon creation (annihilation) operator of vibration mode λ of the
mth site with vibration frequency ωmλ and dimensionless electron-
phonon coupling strength gmλ. It has been reported that the har-
monic bath models are a reasonable approximation for describing
the energy transfer dynamics of the FMO complex.74 Figure 3 shows
a diagram of the model.

We obtain Em and Jmn from the previous literature,55,75 and
each site has the same environment with ωmλ and gmλ calculated
by equally spaced discretization of the bath spectral density76 from

FIG. 3. A diagram of the 7-site FMO model in our calculations.
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experiments.55,77 For each site, 35 vibration modes are discretized,
giving 252 DOFs in total (245 vibrational DOFs + 7 electronic
DOFs). The dimension of the local basis (harmonic potential eigen-
basis) for each mode varies with the frequency, and most modes
have 8 or 4 phonon occupation levels. For the vibration mode with
the Huang-Rhys factor Smλ = g2

mλ, we choose the number of levels
dmλ such that for d′mλ > dmλ the Franck-Condon factor FC(0,d′mλ)

=
S
d′mλ
mλ
d′mλ! e

−Smλ < 1 × 10−10. In principle, numerically exact TD-DMRG
calculation should check the convergence of the number of vibra-
tion modes discretized from the continuous spectral density and the
number of the local basis for each vibration mode. However, such
strict convergence is not necessary for the present work as we are
more interested in the relative error due to different time evolution
schemes rather than the absolute error. To minimize the entangle-
ment, the electronic sites in the MPS chain are arranged in the order
of [7, 5, 3, 1, 2, 4, 6]. All the local vibrational DOFs are arranged next
to the local electronic site as in our previous work.13

We simulate the exciton dynamics at zero temperature. At
t = 0, an excitation at the electronic site 1 is prepared with all vibra-
tions at their lowest energy level, which composes a Hartree product
state. Therefore, for simulation with MS > 1, TDVP-based methods
(TDVP-MU and TDVP-PS) should somehow find the MS − 1 renor-
malized basis to complement the empty matrix elements in the initial
MPS. To solve this, in all the simulations, we use P&C-RK4 to prop-
agate the state with Mmax = 256 and time step size τ = 80 a.u. in the
first 10 steps to t = 800 a.u. Thereafter, the state is compressed to the
predefined bond dimension MS and then evolves with different evo-
lution schemes. Throughout this paper, we use atomic unit (a.u.) as
the unit of time unless otherwise stated and omit the unit of t and τ
for simplicity.

III. RESULTS AND DISCUSSIONS
A. Accuracy and time step size

To quantitatively evaluate the relative accuracy in our calcula-
tions, the mean cumulative deviation of exciton populations at time
t is used,

error(t) =
∑

7
n=1 ∫

t
0 ∣P

(n)
(t′) − P(n)ref (t

′
)∣dt′

7t
, (46)

where P(n) represents the exciton population at the nth site of the
7-site FMO model. P(n)ref is the reference result obtained from TD-
DMRG calculation with an appropriate MPS bond dimension MS
and evolution time step size τ. The standard for choosing MS and
τ is that the exciton populations have converged on both of them.
Such convergence on MS for the TDVP-PS method is illustrated in
Fig. 4 where all curves have already converged on τ. The population
obtained with MS = 32 has already been semiquantitatively correct
although the deviation is visible after t > 20 000. The curves for MS
= 64 and MS = 128 almost overlap with each other. To be more dis-
creet, we choose MS = 256 with τ = 10 as the reference for better
accuracy. A more comprehensive and quantitative demonstration
for the validity of our reference is included in the Appendix. Note
that using the reference calculated by TDVP-MU (VMF) with a suf-
ficiently small regularization parameter rather than TDVP-PS has
little effect on the results presented in this paper.

FIG. 4. The exciton population dynamics (P(n ) vs t) obtained from MS = 32,
MS = 64, and MS = 128 by TDVP-PS. The curves have already converged on step
size τ.

The mean cumulative deviation of the three schemes as a func-
tion of t is plotted in Fig. 5 with MS = 64. For P&C-RK4, the time
step size is 160, which strikes a balance between the RK4 integrator
error and the MPS wavefunction compression error. The step size
in TDVP-based schemes is chosen such that the error due to the
integrator is negligible compared to the restricted MS. For TDVP-
MU (VMF), the step size controlled by the adaptive RK45 integrator
(the relative tolerance and absolute tolerance are 10−5 and 10−8,

FIG. 5. Mean cumulative deviation as a function of evolution time t of P&C-RK4,
TDVP-MU with VMF or CMF, and TDVP-PS to t = 41 120. The bond dimensions
MS are set to 64, and the step sizes are chosen to minimize the error for each
scheme.
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respectively) spans from 5 to 30. For TDVP-MU (CMF) and TDVP-
PS, we choose τ = 2, which is a relatively small value to reduce the
error introduced by the CMF approximation or Trotter decompo-
sition. We find that at a long time scale the TDVP based meth-
ods exhibit almost the same error, as they share the same starting
point during their derivation, while P&C-RK4 guided by a different
philosophy shows a larger error than TDVP based methods.

Although TDVP-MU and TDVP-PS are similar in the long
time limit, subtle differences between the two schemes when
t < 15 000 are observed, which is illustrated in Fig. 6. TDVP-MU
(CMF) is not shown in Fig. 6 as it produces the same result with the
VMF approach at a small step size limit. Figure 6 shows that TDVP-
MU (VMF) is not as accurate as TDVP-PS at short time scales, which
is probably caused by the artificial regularization in Eq. (38). Using
TDVP-MU (VMF) with a sufficiently small regularization parameter
ε as the reference will give the same tendency shown here. When the
regularization parameter ε is decreased from 10−7 to 10−16, which
reduces the invasion to the original EOMs, the accuracy of TDVP-
MU (VMF) is improved, but a smaller time step size is required.
However, it should be noted that the error caused by the regulariza-
tion at the short time regime is several orders of magnitude smaller
than the error at the long time regime controlled by the MPS approx-
imation of the wavefunction with a restricted MS, as illustrated in
Fig. 5. Thus, in this case, setting ε to be 10−10 is more reasonable
in terms of practical computation because this setup costs less sim-
ulation time than setting ε to be 10−13 or 10−16 without significant
precision deterioration. We also compare the new MU regulariza-
tion scheme with the original regularization scheme and find that
the new MU scheme is more accurate with the same ε as the former
studies in (ML-)MCTDH.64,65

Despite the fact that TDVP based methods will obtain the same
results in the small step size τ limit and small regularization param-
eter ε limit, they behave differently to the adjustment of τ because
their EOMs and integration algorithms differ from each other. Since
TDVP-MU (CMF) and TDVP-PS are both second order methods,
we investigate how large the time step τ can be used in these two
schemes with MS = 64. The upper panel of Fig. 7 illustrates the error
at t1 = 6560, which is at the early stage of the evolution. The error of

FIG. 6. Mean cumulative deviation as a function of evolution time t of TDVP-MU
(VMF) and TDVP-PS to t = 17 500. The y axis is in logarithmic scale. For TDVP-
MU (VMF), results with the regularization parameter ε ranging from 10−7 to 10−16

are shown. The bond dimensions MS of the two schemes are set to 64, and the
step sizes are chosen to minimize the error for each scheme.

FIG. 7. Mean cumulative deviation evaluated at t1 = 6560 (upper panel) and
t2 = 41 120 (lower panel) for second order evolution schemes TDVP-MU (CMF)
and TDVP-PS with various step sizes τ. The bond dimensions of the two schemes
are set to 64. In the upper panel, the relation between mean cumulative deviations
of TDVP-MU (CMF) and τ is linear in logarithmic scale and the slope of linear
fitting is 2.03.

TDVP-MU (CMF) shows a linear relationship with τ under logarith-
mic scale, and its slope of linear fitting is 2.03, which is in accordance
with the second order approximation of TDVP-MU (CMF). It also
indicates that for CMF the integrator error is dominant in this time
scale. To the contrary, the error of TDVP-PS is insensitive to τ within
the range of τ shown in Fig. 7, which means that the error due to sec-
ond order Trotter decomposition is smaller than the error due to the
projection error of the MPS ansatz with MS = 64. The small fluctua-
tions in the error-τ relationship of TDVP-PS is considered to be an
artifact of our incomplete error metric defined in Eq. (46) because
the style of the fluctuation becomes different if another error met-
ric is used, such as the mean cumulative derivation of a particular
site rather than the average of all sites. In the lower panel, the time to
measure the error is at t2 = 41 120 and we observe generally the same
trend as in the upper panel, except that when τ ≤ 20 the errors of
TDVP-MU (CMF) and TDVP-PS are close to each other, indicating
that the time step has already converged at this time point and the
error is controlled by the MPS ansatz. However, as the upper panel,
TDVP-PS allows a time step at least 16 times larger than TDVP-MU
(CMF) for a converged result. One of the major reasons is that the
widely known stiffness problem in the EOMs of TDVP-MU due to
the inverse of the ill-conditioned overlap matrix prevents a larger
time step.64,65 Though the matrix unfolding regularization scheme
could partly relieve this problem, it still exists especially when the
regularization parameter ε is small. Besides, TDVP-PS combined
with the Krylov subspace integrator is both unitary and symplec-
tic and ensures the conservation of the wavefunction norm and total
energy regardless of the time step. The same is not true for TDVP-
MU (CMF); thus, the conservation properties will be violated dur-
ing the time evolution, especially with a large time step size. We
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have ruled out the possibility that the superiority of TDVP-PS over
TDVP-MU (CMF) is a special case of the FMO complex by perform-
ing additional benchmarks on the spin-boson model. The details
of the result can be found in the supplementary material. There-
fore, though both TDVP-PS and TDVP-MU (CMF) implemented
here are second order methods, the prefactor of the error term of
TDVP-PS is much smaller than that of TDVP-MU (CMF).

For results presented above, TDVP-MU seems to have little
advantages against TDVP-PS, but in terms of practical computa-
tion, TDVP-MU (VMF) has an appealing advantage that the EOMs
derived can be integrated using any general ODE integrator such as
RK45 in this work. Therefore, the step size in TDVP-MU (VMF) can
be adaptively modified with robust algorithms based on a rigorous
mathematical derivation. On the contrary, only a brute-force step
size adjustment algorithm is proposed in TDVP-PS,70 which com-
pares the states obtained from the time step τ to τ/2 to estimate the
local error. Unlike the case of adaptive RK or other adaptive ODE
integrator where only a small additional cost is required to estimate
the local error, this adaptive algorithm in TDVP-PS takes almost
twice as much time. The TDVP-MU (CMF) approach does not gain
much from the constant mean field approximation in our imple-
mentation; however, the CMF approximation results in decoupled
EOMs and makes distributed evolution of local sites much easier for
large-scale high-performance computing.

B. GPU acceleration
According to the analysis of the computational complexity of

the intensive steps in the three time evolution schemes in Sec. II
(a summary is shown in Table I), we explore how these steps can
be accelerated by a multicore CPU and particularly CPU-GPU het-
erogeneous computing. Although the time cost of each algorithm
should vary with different implementations and there certainly are
rooms for optimizations in our codes, we believe that the data
presented in this section reflect the correct tendency. Our bench-
mark platforms are Intel Xeon® CPU E5-2680 v4 at 2.40 GHz
for CPU-only calculations and Intel Xeon Gold 5115 CPU
at 2.40 GHz with NVIDIA® Tesla® V100-PCIE-32 GB for
CPU-GPU heterogeneous calculations. Only one GPU is used in the
benchmark.

For the three schemes discussed in this paper withMS = 128, the
wall time cost of a single evolution step (τ = 160) as well as the com-
posed substeps is shown in Fig. 8. For TDVP-MU (VMF), there are
several steps within τ. We first focus on the total time cost of each
scheme in Fig. 8 from which we can learn that for all schemes the
parallelization implemented in the standard linear algebra library
on the CPU is not optimal for the TD-DMRG. Using 4 cores can
merely double the computational speed, and further improvement is
not significant up to using all 28 cores of the CPU. A more inspiring
fact is that the CPU-GPU heterogeneous computing is able to boost
the speed of time evolution up to 40 times for TDVP based algo-
rithms although for P&C-RK4 the effect of the GPU is comparable
with 4 cores of the CPU. We note that when doing calculations on
the GPU, the GPU usage is not always 100%, so more drastic speed
up is expected with even larger bond dimensions. Indeed, when
MS = 256, the time costs of TDVP-MU (CMF) on a single core CPU
and the heterogeneous CPU-GPU are 4572 s and 63 s, respectively,
indicating a 73-fold acceleration.

A closer inspection of the substeps shown in Fig. 8 reveals more
details about the acceleration. For P&C-RK4, the bottlenecks of the
algorithm are “QR” and “MatMul-QR,” as discussed in Sec. II A 1.
Although “MatMul-QR” can be efficiently accelerated by a multi-
core CPU and CPU-GPU heterogeneous computing, the same is
not true for “QR” and “SVD,” limiting the overall acceleration effi-
ciency. When the calculation runs on the GPU, the matrix multi-
plication virtually costs no time while “QR” and “SVD” become the
bottlenecks. When the GPU is incorporated in TDVP-MU (VMF),
the SVD for regularization becomes prominent even though it only
scales at O(NM3

Sd) in a single step. Thus, it is suggested to return
back to the original equation in Eq. (28) for a higher efficiency
once the regularization does not take effect anymore, owing to the
fact that calculating the inverse of S directly only costs O(NM3

S).
Even better acceleration efficiency can be achieved in TDVP-MU
(CMF) because SVD is carried out less frequently. The “Get Env”
part also takes less time in the CMF than VMF due to the same rea-
son. The time costs of bottleneck substeps of TDVP-PS are similar
with that of TDVP-MU (CMF) except that the integrator seems to
take a large fraction of time especially when running on the GPU.
This is considered to be a demonstration of the GPU latency which
makes the total time cost of lots of operations on small matrices

TABLE I. Summary of the computational complexity of P&C-RK4, TDVP-MU, and TDVP-PS time evolution schemes.

Substepa P&C-RK4 TDVP-MU TDVP-PS

Ĥ|Ψ⟩ M2
SM

2
Od

2 — —
QR M3

SM
3
Od — M3

Sd
MatMul-QR M3

SM
3
Od — M3

Sd
SVD min(M3

SM
2
Od,M3

SMOd2
) M3

Sd —
MatMul-SVD M3

SM
2
Od M3

Sd —
Get Env — M2

SM
2
Od

2 + M3
SMOd M2

SM
2
Od

2 + M3
SMOd

Deriv — M2
SM

2
Od

2 + M3
SMOd + M3

Sd
2 M2

SM
2
Od

2 + M3
SMOd (forward)

M3
SMO (backward)

Overall NM3
SM

3
Od N(M2

SM
2
Od

2 + M3
SMOd + M3

Sd
2
) (VMF) Nf (M2

SM
2
Od

2 + M3
SMOd)

Nf (M2
SM

2
Od

2 + M3
SMOd + M3

Sd
2
) (CMF)

aSee the text in Sec. II for the definitions and labels of the sub-steps.
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FIG. 8. The time cost of a single evolution step and its intensive substeps with MS
= 128 and τ = 160. The bars for CPU-GPU heterogeneous computation are further
shown in the insets for clarity. (See the text in Sec. II for the definitions and labels
of the substeps.)

larger than the total time cost of a few operations on large matrices.
When MS is increased to 256, the relative time cost of the “Krylov”
part is diminished. The exact abnormality with GPU acceleration is
also manifested to a lesser extent in TDVP-MU (CMF) where the
time-consuming “other” part is primarily composed of operations
in the Runge-Kutta integrator. Hence, if a smaller bond dimension
is employed, devoting more resource on the computation will not
gain much benefit. In fact, for TDVP based schemes, the absolute
wall time with the GPU is roughly the same between MS = 128 and
MS = 32. For example, the time costs for a single step of evolution in
TDVP-PS with MS = 128 and MS = 32 are 10.8 s and 7.9 s, respec-
tively. This phenomenon implies that when MS ≤ 128 the latency of
GPU calculation is of the same order with the actual computational
time cost. Therefore, with the CPU-GPU heterogeneous computa-
tion, TD-DMRG simulation with MS > 100 for a large-scale system
would become a routine task in the future.

IV. CONCLUSION
To summarize, in this paper, we carry out numerical bench-

marks on three different TD-DMRG time evolution schemes, which
are P&C-RK4, TDVP-MU, and TDVP-PS, in terms of accuracy
based on the vibronic coupling model represented by the FMO
complex. After defining the tangent space projector for a general
noncanonical MPS, the EOMs of TDVP-MU and TDVP-PS are red-
erived from the same starting point but with different gauge con-
ditions. The numerical results demonstrate that TDVP-MU and
TDVP-PS could indeed obtain similar accuracy with a converged
time step size τ, while P&C-RK4 is not as accurate as them. How-
ever, surprisingly, the converged time step size of TDVP-PS is at
least 16 times larger than that of TDVP-MU (CMF) although both of

them implemented in this work are second order methods. Regard-
ing the computational efficiency, we first analyze the complexity
of each evolution scheme. To further accelerate the intensive ten-
sor computations in the TD-DMRG, we adopt a CPU-GPU het-
erogeneous computing strategy in which the CPU and GPU are,
respectively, responsible for the tensor decomposition and contrac-
tion. We find that for the TDVP-based schemes where the tensor
contraction is the main bottleneck, this heterogeneous computing
approach is able to speed up these two schemes by up to 73 times
(MS = 256). Taking both the accuracy and efficiency into consider-
ation, TDVP-PS is highly recommended for the vibronic coupling
problems.

Though in this work we mainly focus on the vibronic model,
the TD-DMRG has also been used in the ultrafast electron dynam-
ics with ab initio quantum chemistry Hamiltonian14,15 and is highly
possible to be used in ab initio quantum molecular dynamics in the
future. These problems are more complicated than the model prob-
lem, for example, the dimensions of the MPS and MPO are usually
much larger in the former problem and even an explicit MPO could
hardly be constructed in the latter problem. However, we still specu-
late that TDVP-PS should be the better evolution scheme and GPU
acceleration would be more essential in these problems.

Finally, we conclude that with the accurate and efficient TDVP-
based evolution schemes (especially TDVP-PS) and CPU-GPU het-
erogeneous algorithm/hardware, the TD-DMRG has been a promis-
ing method for the large-scale quantum dynamics simulation of real
chemical and physical problems.

SUPPLEMENTARY MATERIAL

See the supplementary material for the benchmark results
between TDVP-MU (CMF) and TDVP-PS based on the spin-boson
model from the weak to strong coupling regime.
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APPENDIX: THE VALIDITY OF THE REFERENCE STATE
Here, we present the data for the numerical convergence of the

reference obtained by TDVP-PS withMS = 256 and τ = 10. The mean
cumulative deviation with various MS and τ = 10 at t1 = 6560 and
t2 = 41 120 is shown in Table II, while the same data for MS = 256
and various τ are shown in Table III.

From Tables II and III, we can see that the reference is accurate
to a level of approximately 10−11 for a short time scale (t1 = 6560)
and 10−6 for a long time scale (t2 = 41 120), which is considered to
be accurate enough for the error scales discussed in the main text.
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TABLE II. The mean cumulative deviation with various MS and τ = 10 by TDVP-PS
at t1 = 6560 and t2 = 41 120 (reference: MS = 256, τ = 10).

Error (t)

MS t1 = 6560 t2 = 41 120

32 6× 10−7 1× 10−3

64 8× 10−9 3× 10−4

128 3× 10−10 3× 10−5

192 3× 10−11 7× 10−6

TABLE III. The mean cumulative deviation with MS = 256 and various τ by TDVP-PS
at t1 = 6560 and t2 = 41 120 (reference: MS = 256, τ = 10).

Error (t)

τ t1 = 6560 t2 = 41 120

320 4× 10−10 8× 10−7

160 7× 10−11 7× 10−7

80 9× 10−13 8× 10−7

40 7× 10−13 6× 10−7
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