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Data for this article, including dataset, force field and MD results are available at https://doi.org/ 
10.5281/zenodo.13913359. The code for the thermal conductivity calculation workflow can be 
found at https://github.com/gdbhcxhmjk-z/ThermalConductivity-Workflow. The version of the 
code employed for this study is version 0.1.2.
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Active Learning Force Field for the Thermal Transport Properties 
of Organometallic Complex Crystal 

Wenjie Zhang a , Weitang Lib, and Zhigang Shuai*a,b 

The accurate prediction of lattice thermal conductivity in organometallic thermoelectric materials is crucial for advancing 

energy conversion technologies. Methods based on molecular dynamics simulations can solve this problem well, but require 

force fields with sufficiently high accuracy. Due to the complexity of chemical bonding in organometallic complex materials, 

the development of force fields with high predictivity has been a long standing challenge, particularly when thermal 

transport is concerned which requires even greater accuracy. In recent years, the rapid advancement of machine learning 

force fields has offered substantial potential for addressing these issues. However, there remains challenges for materials 

with large organometallic complexes in one unit cell and both inter- and intra-molecular interactions. In this work, we 

employ an active learning approach combined with deep neural networks to develop a force field taking copper 

phthalocyanine as example. The model utilizes a local environment descriptor for representation without explicitly 

characterizing the metal-organic coordination. The nonlinear mapping capabilities of deep neural networks enable the 

model to effectively capture higher-order many-body interactions. Furthermore, we utilized the Green-Kubo method to 

calculate the thermal conductivity of copper phthalocyanine, revealing a value of 0.49 W/mK at 300 K, consistent with 

experimental findings (0.39 W/mK). This result significantly surpasses previous work with classical force fields. This work 

serves as an essential progress in demonstrating that the introduction of machine-learning force fields can effectively 

characterize the interactions of metal-organic complex systems and can significantly advance the development and 

discovery of organometallic thermoelectric materials

Introduction 

The pursuit of efficient energy conversion technologies has 

intensified due to escalating energy demands and growing 

environmental concerns. Thermoelectric materials, which 

enable direct conversion between thermal and electrical energy, 

have garnered significant attention for their potential 

applications in power generation and refrigeration without 

moving parts or emissions1. The efficiency of thermoelectric 

materials is quantified by the dimensionless thermoelectric 

figure of merit,  𝑍𝑇 = 𝑆2𝜎𝑇/𝜅 , where 𝑆  is the Seebeck 

coefficient, 𝜎  is the electrical conductivity, 𝑇 is the absolute 

temperature, and 𝜅 is the thermal conductivity2. Achieving high 

𝑍𝑇  values requires a delicate balance between these 

interdependent parameters, which poses a significant challenge 

in thermoelectric material design. Organometallic complexes 

have emerged as promising candidates in advancing 

thermoelectric technology due to their unique electronic 

structures and tunable properties3. These complexes consist of 

metal atoms bonded to organic ligands, creating a versatile 

platform for manipulating charge carrier transport and phonon 

scattering at the molecular level. The incorporation of heavy 

metal atoms can enhance the Seebeck coefficient and reduce 

thermal conductivity through increased phonon scattering, 

thereby improving the 𝑍𝑇 value4.  

 

Organometallic complexes typically have important 

characteristics such as enhanced electrical conductivity due to 

delocalized π-electron systems and metal-induced charge 

transfer, tunable electronic properties through modification of 

metal centers or ligands, and inherently low thermal 

conductivity from their organic components. The synergistic 

effects between the metal and organic ligands facilitate 

improved charge carrier mobility and reduced phonon 

transport, while their synthetic versatility enables molecular-

level engineering to optimize thermoelectric performance5–10. 

Currently, organometallic complexes have very specific 

application systems in the thermoelectric field, demonstrating 

their potential to enhance thermoelectric performance through 

various mechanisms. For example, organometallic polymers, 

such as poly(3-hexylthiophene) doped with organometallic 

complexes, have shown increased electrical conductivity and 

improved thermoelectric efficiency11. Metal phthalocyanine 

complexes, including copper phthalocyanine, have been 

investigated for their thermoelectric properties due to their 

planar conjugated structures and thermal stability, leading to 

enhanced charge transport and Seebeck coefficients in thin-film 

a. MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, 
Department of Chemistry, Tsinghua University, Beijing 100084, China. 

b. School of Science and Engineering, The Chinese University of Hong Kong, 
Shenzhen, Guangdong 518172, China. 
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devices12. Additionally, organometallic complexes have been 

incorporated into clathrates, coordination polymers, quantum 

dots, and skutterudites, all of which have contributed to the 

development of thermoelectric materials with optimized 𝑍𝑇 

values13–17. 

 

The complex and often large unit cells of organometallic 

compounds, characterized by low symmetry and diverse 

bonding environments, present significant challenges in 

accurately predicting lattice thermal conductivity 𝜅𝐿 . 

Theoretical methods play a crucial role in understanding and 

forecasting the thermal transport properties of these materials. 

The two kinds of most reliable approaches for calculating 𝜅𝐿  is 

solving the phonon Boltzmann transport equation (BTE) 

combined with density functional theory (DFT) calculations18–20 

and molecular dynamics simulation21. For the method based on 

phonon BTE, first-principles calculation provides detailed 

insights into phonon dispersion relations and lifetimes by 

calculating interatomic force constants (IFCs). Studies have 

provided valuable insights into the thermal transport 

mechanisms of arsenic–phosphorus alloys, and IV-VI 

semiconductor compounds22,23. However, the computational 

cost associated with calculating IFCs for organometallic systems 

is substantial due to their structural complexity24. For MD-based 

methods, the widely usage includes non-equilibrium molecular 

dynamics based on Fourier’s law of heat conduction and 

equilibrium molecular dynamics based on the Green–Kubo 

formalism25–27. MD simulations inherently include anharmonic 

effects and can handle large systems, making them suitable for 

studying materials with significant structural disorder or weak 

intermolecular interactions. Nevertheless, the accuracy of MD 

simulations heavily depends on the choice of force field. 

Previous studies have attempted to model the copper 

phthalocyanine (CuPc) system using tailor-made force fields 

based on hybrid-COMPASS force field28. While their approach 

provided valuable insights into the structural properties of CuPc, 

it exhibited significant limitations in accurately predicting its 

thermal transport properties, with discrepancies of an order of 

magnitude compared to experimental observations.  Due to the 

poor description of higher-order many-body interactions, most 

of the classic force fields still lack the precision needed for 

systems which vibrational properties have strong influence on 

materials properties. Developing accurate potentials for 

organometallic compounds is challenging, limiting the 

predictive power of MD in these systems. 

 

In recent years, machine learning force fields (MLFFs) have 

emerged as a promising solution to these challenges29. MLFFs 

leverage large datasets generated from high-level quantum 

mechanical calculations to train models that can predict 

potential energy surfaces with near-quantum accuracy30. By 

learning directly from the data, MLFFs can capture complex 

interactions and coordination environments without relying on 

predefined functional forms or fixed parameters31. Many 

machine learning force field (MLFF) models have been 

developed, such as Gaussian Approximation Potentials (GAP)32, 

ANI33, Deep Potential (DP)34,35, Moment Tensor Potentials 

(MTP)36, Neural Equivariant Interatomic Potentials (NequIP)37, 

PhysNet31, TorchMD-NET38, NEP39,40 and so on. These MLFFs 

have emerged as transformative approaches to molecular 

simulations, offering near ab initio accuracy at a fraction of the 

computational cost. 

 

Furthermore, there have been significant advances in 

combining machine learning with thermal transport property 

calculations41. Baroni et al. investigates the viscosity and 

thermal conductivity of liquid water via molecular dynamics 

simulations based on DP model42,43. Zojer et al. parameterizes a 

machine-learned potentials of MTP model, achieving near-DFT 

precision in modeling the structural, thermal, and mechanical 

properties of metal-organic frameworks (MOFs)44.Cheng et al. 

explores the effects of high pressure on the lattice dynamics and 

thermal transport properties of PbTe with NEP model, revealing 

that pressure-induced changes enhance the lattice thermal 

conductivity by reducing phonon-phonon scattering45. These 

studies highlight the efficacy of MLFFs in exploring thermal 

transport phenomena, which are critical for the design of 

materials in thermoelectric applications and thermal 

management technologies.  

 

This study focuses on solving the problem of calculating the 

lattice thermal conductivity of organometallic complex systems, 

which in turn leads to a better prediction of the thermoelectric 

properties. We choose copper phthalocyanine as an example 

and deploy a set of generalized workflows for implementing 

machine learning force field construction without relying on 

preconceived notions of fixed chemical bonds or prior 

knowledge of specific interactions, which are often inherent in 

classical force fields. This innovation effectively overcomes the 

traditional challenges associated with characterizing metal-

organic coordination bonds in organometallic complexes. We 

propose utilizing an active learning approach46–48 to construct a 

machine learning force field (MLFF) for the CuPc system that 

achieves accuracy comparable to DFT calculations. By 

accurately modeling the complex interactions within CuPc, our 

MLFF enables reliable molecular dynamics simulations for the 

prediction of thermal transport properties and enables accurate 

calculations of thermal conductivity in CuPc crystals. This 

advancement is critical for understanding the thermophysical 

behavior of CuPc and can also be used for other organometallic 

systems, which will significantly impact the design and 

optimization of organic thermoelectric materials. 

Method and Implementation 

In this section, the technical approach adopted in this study will 

be introduced. We deploy a workflow from the initial collection 

of the base dataset to the construction of MLFF model and the 

subsequent calculation of the thermal transport properties. By 

utilizing an active learning framework, we systematically 

generate and organize datasets covering the potential energy 

surface in the solid state of copper phthalocyanine crystals. 
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Figure 1. Overall Workflow 

 

Overall Workflow 

We employ a set of workflows capable of starting from the 

construction of the force field of metal-organic molecular 

complexes to the calculation of their thermal transport 

properties. The specific workflow is illustrated in the Fig.1  and 

can be broadly categorized into three distinct phases. Initially, 

we utilize an active learning framework to sample 

configurations of CuPc system, generating a dataset suitable for 

force field development. This phase involves the systematic 

selection of representative structures, which are subsequently 

labeled using first-principles calculations performed with 

VASP49. This ensures that the dataset possesses high accuracy, 

capturing the essential features of the system's potential 

energy landscape. Following the establishment of a dataset with 

first-principles accuracy, we employ deep neural networks 

(DNNs) to model the potential energy surfaces of CuPc. This 

step is crucial for constructing a robust mapping relationship 

between the structural configurations and the corresponding 

physical quantities, such as energy, force, and virial. The DNN 

fitting process leverages the rich dataset to enable precise 

predictions of interatomic interactions. With the high-precision 

machine learning force field in place, we proceed to compute 

the lattice thermal conductivity of the CuPc system. This is 

accomplished through equilibrium molecular dynamics 

simulations, combined with the Green-Kubo formalism to 

extract thermal transport properties. The resulting lattice 

thermal conductivity values provide insights into the thermal 

behavior of the system under investigation. A detailed 

description of each component of this workflow will be 

elaborated upon in the following sections.  

 

 

 

 

 

 

 

 

Figure 2. Molecular structure of copper phthalocyanine 

Crystal information 

Structurally, CuPc consists of a planar, cyclic 

tetrabenzoporphyrin framework with a central copper ion 

coordinated to the nitrogen atoms of the phthalocyanine ligand. 

We collect our initial dataset on the α and β forms of copper 

phthalocyanine, with specific crystal structures and data 

presented in Fig. 2 and Table 1. In its crystalline form, the α and 

β form display different packing arrangements. Crystal 

structures are collected from experiment references50,51. 

 

Table 1. Unit Cell Parameters for CuPc 

 𝛼-CuPC 𝛽-CuPc 
a(Å) 12.9 19.4 
b(Å) 3.8 4.8 
c(Å) 12.1 14.6 
𝛼(deg) 96.2 90.0 
𝛽(deg) 90.6 120.9 
𝛾(deg) 90.3 90.0 

 

Machine Learning Interatomic Potential 

The essential effect of machine learning interatomic potentials 

is to establish a connection between structural configurations 

and physical properties, enabling the efficient acquisition of a 

substantial amount of data that closely approximates the 

accuracy of first-principles calculations, while minimizing 

computational time costs. In this work, we utilize the Deep 

Potential framework34,35, which is based on deep neural 

networks (DNNs), to construct the force field model. Notably, 

this application does not require any explicit description of 

chemical bonds, which alleviates concerns regarding bond 

order when addressing complex coordination systems. The 

deep potential model has been extensively benchmarked not 

only against GAPs, MTPs, ACE, and MACE but also against other 

state-of-the-art models such as BPNN, SchNet, DimeNet++, 

GemNet-T, GemNet-dT, NequIP, Allegro, and SCN. These 

benchmarks have shown that DP performs well in both accuracy 

and speed. In addition, research on traditional thermoelectric 

materials, such as the work by Fan et al.39, further supports that 

DP model offers higher accuracy and faster performance 

compared to MTP and GAP models, particularly in the context 

of heat transport properties. 

 

In processing structural data, we employ the concept of the 

local environment to define descriptors for each atom. 
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Specifically, the local environment of each atom is determined 

by the atom itself and its neighboring atoms within a specified 

truncation radius. Consequently, only those atoms within the 

cutoff radius influence the force field acting on the central atom. 

This approach ensures that atomic interactions depend on the 

arrangement of surrounding atoms in the local environment. 

This framework enhances the flexibility and accuracy of 

modeling interatomic interactions in complex systems, such as 

the copper phthalocyanine (CuPc) complex. In  the framework 

of deep potential, the construction of descriptor involves 

training a neural network to automatically determine the 

coefficients of different many-body interaction terms. 

 

Consider a system containing N atoms, where the coordinates 

of the atoms are labeled as 𝒓 = {𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵} ∈ ℝ𝟑𝑵. The total 

energy of the system 𝑬𝒕𝒐𝒕𝒂𝒍  is represented as the sum of the 

local energies 𝑬𝒊 of individual atoms: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑖

𝑖

= 𝒩(𝐷(𝑥𝑖 , {𝑥𝑗}𝑗∈𝑛(𝑖))), 

where 𝒩 is the fitting network and 𝑫 is the descriptor. The input of 

descriptor is 𝒙𝒊 = {𝒓𝒊, 𝒛𝒊}, while 𝒛𝒊 represents the chemical species. 

And 𝒏(𝒊) denotes the neighbour atoms of atom 𝒊 within the cutoff 

radius 𝒓𝒄. The descriptor 𝑫 of atom 𝒊 is given by: 

𝑫 =
1

𝑁𝑐
2 𝑮𝑇𝑳(𝑳)𝑻𝑮 

where 𝑳 is the local environment matrix of atom 𝒊, the row of which 

is given by: 

𝑳𝒋 = [𝑠(𝑟𝑖𝑗),
𝑠(𝑟𝑖𝑗)𝑥𝑖𝑗

𝑟𝑖𝑗
,
𝑠(𝑟𝑖𝑗)𝑦𝑖𝑗

𝑟𝑖𝑗
,
𝑠(𝑟𝑖𝑗)𝑧𝑖𝑗

𝑟𝑖𝑗
] 

where 𝒓𝒊𝒋 is the relative distance between atom 𝒊 and atom 𝒋. The 

𝒔(𝒓) is the smooth version of cutoff function, which guarantees 

that only contributions within distance 𝒓𝒄 of atom 𝒊 are considered 

and makes the second-order derivatives at the truncation still 

continuous. 

The embedding matrix 𝑮 is given by: 

𝑮 = 𝒩𝒆𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈(𝑠(𝑟𝑖𝑗)) 

where the 𝓝𝒆𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈  is a three-layer MLP, the parameters of 

which is determined through training. The descriptor 𝑫 

preserves the translational, rotational, and permutational 

symmetries and are passed to another three-layer MLP to evaluate 

the potential energy. 

After getting the potential energy 𝑬, the atomic force 𝑭𝒊  and the 

virial tensor 𝚵 = 𝚵𝜶𝜷 can be derived. 

𝑭𝒊,𝛼 = −
𝜕𝐸

𝜕𝑟𝑖,𝛼
, 

Ξ𝛼𝛽 = − ∑ −
𝜕𝐸

𝜕𝒉𝜸𝛼
ℎ𝛾𝛽

𝛾

 , 

where 𝜶 represents the 𝜶th component of 𝒓𝒊 and  𝑭𝒊. 𝒉𝜶𝜷 is the 𝜷th 

component of the 𝜶 th basis vector of simulation region. The 

optimization of parameters within the model is achieved through the 

minimization of a loss function, as illustrated in the following 

equation: 

ℒ = 𝑤𝐸(𝐸pred − 𝐸ref )
2

+ 𝑤𝐹 ∑∥∥𝐹𝑖
pred 

− 𝐹𝑖
ref 

∥∥
2

𝑖

+ 𝑤Ξ ∑ (Ξ𝛼𝛽
pred 

−  Ξ𝛼𝛽
ref )

2

𝛼,𝛽

 

where 𝒘𝑬, 𝒘𝑭  and 𝒘𝚵 are weight coefficients that balance the 

contributions of different physical quantities. It is noteworthy 

that, although the descriptors primarily rely on information 

from two-body and three-body interactions, the nonlinear 

mapping capabilities of deep neural networks enable the model 

to effectively capture higher-order many-body interactions. 

This allows the entire force field model to cover high-order 

interactions as comprehensively as possible. The hidden layers 

of the network are capable of learning complex relationships 

among the input features, which is difficult to achieve with 

traditional classical force fields. 

 

Active Learning Framework 

 

Figure 3. Active Learning Iteration Steps 

 

The generation of a comprehensive dataset is crucial for 

constructing an effective force field. It must balance sufficient 

data coverage of relevant phase space with minimal 

redundancy, as excessive redundancy can degrade model 

performance and increase computational costs. For the CuPc 

complex, high-quality and diverse datasets are essential to 

capture complex interactions and accurately represent 

configurational space, facilitating effective machine learning 

force field (MLFF) predictions. 

 

The active learning framework serves as a strategic approach to 

efficiently generate and select informative data. It is an iterative 
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process that efficiently explores the vast configurational space 

by selectively sampling the most informative structures, 

thereby ensuring the robustness and accuracy of the model. 

As shown in Fig. 3, the active learning process was iteratively 

executed through the following steps: 

1. Model Training: Four DNNs are trained using the current 

dataset with different initial weights, optimizing the neural 

network parameters to minimize the loss function defined 

by discrepancies between predicted and reference 

energies and forces. 

2. Candidate Generation: New configurations are generated 

using molecular dynamics simulations. Lots of trajectories 

are performed under the current potential functions to 

explore new regions of the PES. 

3. Uncertainty Evaluation: The ensemble of force field 

models predicts energies and forces for the candidate 

configurations. The max standard deviation ( 𝝈 ) among 

these predictions quantify the uncertainty for each 

configuration. 

(𝝈 = 𝒎𝒂𝒙√〈‖𝑭𝒎,𝒊 − 〈𝑭𝒎,𝒊〉‖
𝟐

〉 

where 𝑭𝒎,𝒊  denotes the force on atom 𝒊  predicted by 

model 𝒎. ⟨… ⟩ represents the average of model predictions. 

4. Configuration Selection: Configurations satisfying 𝝈𝒎𝒊𝒏 <

𝝈 < 𝝈𝒎𝒂𝒙 are selected for inclusion in the training dataset. 

This ensures that we focus on regions where the model's 

uncertainty was informative but avoid regions likely 

associated with unphysical structures. 

5. High-Fidelity Calculations: Selected configurations 

undergo density functional theory (DFT) calculations to 

obtain accurate reference energies, forces and virial, 

providing high-quality data for training. 

6. Dataset Augmentation: The new data are incorporated 

into the training set, and the DNNs are retrained to include 

this additional information. 

7. Convergence Assessment: The model's performance is 

evaluated against predefined criteria, such as root mean 

square error (RMSE) thresholds on a validation set. If the 

model meets the convergence criteria, the active learning 

loop will be terminated; otherwise, it will repeat from step 

1. 

 

Uncertainty evaluation is of importance in guiding the active 

learning process. We utilize an ensemble of neural network 

models trained on the same dataset but with different initial 

weights to estimate predictive uncertainty. The variance among 

the ensemble's predictions serves as an indicator of uncertainty 

for each configuration. The standard deviation of the predicted 

energies and forces is calculated across the ensemble models.  

This standard deviation provides a quantitative measure of the 

model's uncertainty for that configuration. A very small 

standard deviation indicates that the ensemble models agree 

closely in their predictions, suggesting that this region of the PES 

has been sufficiently explored and the DNN is confident in its 

predictions. A higher standard deviation represents regions that 

are not fully described or are more complex, indicating that 

additional data in these areas could improve the model's 

performance. However, if the standard deviation is excessively 

high, it may imply that the configuration corresponds to a 

physically incorrect or unstable structure, possibly due to 

numerical instabilities or artifacts in the candidate generation 

process.  

 

Building on the above discussion, it is instructive to compare 

this ensemble-based approach to uncertainty quantification 

with the Bayesian approach employed in VASP's Active Learning 

Force Field. Bayesian approaches, such as Gaussian Process 

Regression (GPR), estimate uncertainty based on the posterior 

distribution of model parameters. These methods provide a 

probabilistic framework for uncertainty quantification, which is 

beneficial when detailed uncertainty analysis is required. They 

give not only a point estimate but also an associated variance, 

reflecting the model's confidence in its predictions. This 

approach is particularly advantageous for small data sets or 

situations where the relationship between input and output is 

complex. In contrast, our method uses an ensemble of models 

to estimate uncertainty by comparing their predictions. This 

approach does not rely on a probabilistic framework and 

instead uses the variation in model outputs (forces or energies) 

to quantify uncertainty. The advantage of this method lies in its 

computational efficiency, as it avoids the heavy computational 

cost of calculating posterior distributions, making it well-suited 

for large systems or when computational resources are limited. 

Moreover, this approach is highly flexible and does not require 

assumptions about the prior distribution, which is particularly 

useful when prior knowledge is scarce. 

Compared to Bayesian methods, the ensemble-based approach 

offers less detailed probabilistic uncertainty estimates, 

particularly in cases with sparse data or complex dependencies, 

and may overestimate uncertainty in regions where models 

agree closely. However, our ensemble-based approach is 

efficient, scalable, and flexible, and thus particularly well suited 

for high-throughput simulations in complex systems where 

specifying a priori distributions is impractical. It avoids intensive 

operations such as covariance matrix inversion. This approach 

provides a practical alternative to Bayesian error estimation in 

cases where computational efficiency is critical or prior 

information is limited. 

 

When selecting configurations based on uncertainty, we 

consider both a lower and an upper bound on the standard 

deviation. Lower threshold ( 𝝈𝒎𝒊𝒏 ), excluding configurations 

with very low uncertainty (𝝈 < 𝝈𝒎𝒊𝒏)  prevents the addition of 

data from regions where the MLFF is already well-trained. 

Upper threshold ( 𝝈𝒎𝒂𝒙 ) excludes configurations with 

exceedingly high uncertainty, which could correspond to 

unphysical structures or numerical errors. To further ensure 
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that selected configurations represented physically meaningful 

states of the CuPc complex, additional filters based on structural 

parameters are applied. Configurations exhibiting unrealistic 

bond lengths, angles, or atomic overlaps are excluded, even if 

they fall within the uncertainty range. 

Furthermore, the values of 𝝈𝒎𝒊𝒏  and 𝝈𝒎𝒂𝒙  are not fixed but 

dynamically adjusted based on the distribution of uncertainties 

in each iteration. This adaptive approach allows the selection 

criteria to evolve with the model's improving accuracy. A 

balance is maintained between exploring new regions of the 

PES (exploration) and refining the model's accuracy in already 

sampled regions (exploitation). 

The idea of excluding configurations with excessively high 

uncertainty addresses the issue of potentially unphysical 

configurations that could arise in the active learning process, 

which can adversely affect the training of the model. In 

particular, large error estimates tend to occur in the early stages 

of active learning or when new structures are collected in 

regions of new temperature ranges. During these stages, the 

force field is not yet fully trained to describe the current 

potential energy surface, leading to the generation of 

unreasonable structures. For example, some atoms may be 

placed too close to each other, or other atoms may be 

positioned far from the system. If these structures were 

included in the dataset, they would degrade the predictive 

accuracy of the force field and introduce more unphysical 

configurations, exacerbating the problem. The potentials will 

exhibit greater variability in energy and force predictions, and 

the models struggle to generalize well to configurations that 

were outside the training set's scope. The inclusion of uncertain 

configurations leads to overfitting in certain regions of the 

configuration space, reducing the overall robustness of the 

model. 

 

 

Thermal Conductivity Calculation 

In this study, we employed equilibrium molecular dynamics 

(EMD) simulations in conjunction with the Green-Kubo 

formalism to calculate the thermal conductivity of the material 

under investigation. The Green-Kubo approach provides a 

rigorous theoretical framework that connects microscopic 

fluctuations in a system at thermal equilibrium to macroscopic 

transport coefficients, such as thermal conductivity25,26. By 

analyzing the time correlations of heat flux within the system, 

we can derive the thermal conductivity without imposing a 

temperature gradient, which is advantageous for simulating 

homogeneous systems and avoiding non-equilibrium effects. 

 

The thermal conductivity tensor 𝜿 is given by the Green-Kubo 

relation: 

𝜿 =
1

𝑘B𝑇2 ∫  
∞

0

⟨𝐉(0) ⋅ 𝐉(𝑡)⟩𝑑𝑡 , 

where: 𝒌𝑩  is the Boltzmann constant, 𝑻  is the absolute 

temperature and 𝐉(𝒕) is the heat current vector at time 𝒕. 𝐉(𝟎) ⋅

𝐉(𝒕)  denotes the equilibrium ensemble average of the outer 

product of the heat flux at times 0 and 𝒕. The integral over time 

extends to infinity, but in practice, it is truncated at a time 

where the heat current autocorrelation function (HCACF) 

decays sufficiently. The microscopic heat flux 𝐉(𝒕)  is a vector 

quantity representing the flow of energy through the system at 

a given time. For classical systems, the heat flux can be 

expressed as: 

𝐉(𝑡) =
1

𝑉
[∑  

𝑖

𝑒𝑖𝐯𝑖 − ∑  

𝑖

𝒓𝑖 ⋅ 𝑭𝑖] , 

where 𝑉  is the volume of the simulation cell. 𝑒𝑖 is the site 

energy of atom i, including kinetic and potential energy 

contributions. 𝐯𝑖 , 𝒓𝑖  and  𝑭𝑖  are the velocity, position vector and 

atomic force of atom i. 

 

The molecular dynamics simulations are performed using the 

LAMMPS software package52. Periodic boundary conditions are 

applied in all three spatial dimensions to mimic an infinite bulk 

system and eliminate surface effects. Prior to data collection, 

the system is equilibrated under the NVT ensemble using a 

Nosé-Hoover thermostat. The equilibration phase ensures that 

the system reached thermal equilibrium, with stable 

thermodynamic quantities such as temperature, pressure, and 

total energy. production runs were conducted under the NVE 

ensemble to simulate the microcanonical ensemble. This setup 

is essential because the Green-Kubo formalism requires natural 

fluctuations of the system without external perturbations from 

thermostats or barostats. The production runs are sufficiently 

long, typically several nanoseconds, to ensure adequate 

sampling of heat flux fluctuations. A small timestep in the 

femtosecond range is used to accurately integrate the 

equations of motion and resolve atomic interactions. 

Results and Discussion 

Data Set 

In this work, we employ an active learning approach to generate 

molecular structures, followed by single-point calculations 

using VASP to derive first-principles energy, force, and virial 

data corresponding to these structures. DFT calculation is 

performed using Vienna ab initio simulation package (VASP) 

with the projector augmented wave (PAW) method and the 

Perdew–Burke–Ernzerhof (PBE) exchange–correlation 

functional53,54. The PBE functional is augmented with the D3 van 

der Waals correction to accurately account for dispersion 

interactions. We set an energy cutoff of 800 eV for the PAW, a 

2×6×3 k-point mesh, and a threshold of 10−5 eV for the 

electronic self-consistent loop. Detailed steps have already 

been described in the previous methods section. This process is 

facilitated by the DPGEN55 program. 
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Initially, we generate a preliminary dataset, from which we train 

an initial force field. This is iteratively expanded through 

molecular dynamics sampling. The initial dataset consists of 

structures selected from short-time ab initio molecular 

dynamics (AIMD) simulations conducted on α-CuPc. 

Subsequently, we conduct molecular dynamics simulations on 

different perturbed structures of 𝛼-CuPc and 𝛽-CuPc under NPT 

ensemble across 3 temperature intervals ([50K,100K,200K], 

[300K,400K,500K], [600K,700K,800K]) and five pressure levels 

[1bar, 5bar, 10bar, 100bar, 1000bar] for various configurations, 

resulting in a total of 5345 distinct structures. The distribution 

of these structures by temperature is presented in Table 2. 

Notably, the higher temperature regions yield a greater number 

of collected structures during the active learning iterations. 

When sampling in different temperature zones, we will keep 

selecting new structures based on uncertainty evaluation until 

the model accuracy converges. The detailed setting of 

thresholds is showed in Supporting Information (SI) Table S1. 

More structures collected in the temperature zone reflect the 

broader energy coverage that allows exploration of a more 

extensive phase space. 

 

 

Table 2. Data set distribution by temperature 

Temperature(K) 
Structure Counts 

𝛼-CuPc 𝛽-CuPc 

[50,100,200] 226 489 

[300,400,500] 1042 743 

[600,700,800] 1411 1434 

 

Machine Learning Force Field Training 

Utilizing the obtained dataset, we construct an efficient 

machine learning force field model based on high-accuracy 

energy, force, and virial data extracted from first-principles 

calculations (DFT). The neural network is trained using the 

Adam optimization algorithm. We randomly select 80% of the 

dataset as the training set and reserve the remaining 20% for 

testing. In the setting of the training parameters, the cutoff 

radius are 6.50 Å. The embedding network has three layers with 

25, 50, and 100 neurons, respectively, whereas the fitting 

network has three layers with 240 neurons. The loss function is 

optimized using the Adam stochastic gradient descent method. 

As shown in Fig. 4, we compare the force field accuracy before 

and after employing active learning framework. Refining the 

force field through the active learning framework results in an 

order-of-magnitude improvement in accuracy on the same test 

set. 

 

In the test set, the root mean square error (RMSE) for energy 

reaches 0.55 meV/atom, the RMSE for force is 57.9 meV/Å, and 

the RMSE for virial per atom is 4.1 meV/atom. These figures 

indicate a high level of precision, with the model exhibiting 

similar performance across both the training and test sets. This 

close alignment further demonstrates that the dataset 

generated based on the active learning framework has a good 

coverage of the potential energy surface, and that deep 

potential model adequately obtains the required information 

from the dataset. 

 

 

Figure 4. (a) Energy, (b) force, and (c) virial per atom before as 

calculated from the neural network before active learning 

compared with DFT calculations in training and test set. (d) 

Energy, (e) force, and (f) virial per atom are calculated from the 

neural network after active learning 

 

However, further assessments are necessary to evaluate the 

model's physical performance, particularly whether the trained 

force field can yield results comparable to those obtained from 

DFT calculations. To test this, we compute the radial distribution 

function (RDF) for both the α and β phases of CuPc at 300K using 

both VASP and the trained model. The radial distribution 

function (RDF) 𝑔(𝑟)   provides insights into the spatial 

distribution of particles within a system. As shown in Fig.5, the 

RDF results from our force field model closely align with those 

from DFT calculations, reinforcing the reliability and accuracy of 

the trained force field model. 
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Figure 5. Comparison of the radial distribution functions of 𝛽-

CuPc(300K) from ab initio (continuous blue line) and deep 

potential (dashed orange line) simulations, respectively. 

 

 

Convergence Test 

In this study, we employ equilibrium molecular dynamics (EMD) 

in conjunction with the Green-Kubo equation to compute the 

thermal conductivity of CuPc materials. While the EMD method 

does not strictly require the simulation cell size to exceed the 

phonon mean free path, size effects must be considered, 

necessitating a convergence test to mitigate their impact on the 

results. We conduct tests using various cell sizes, including 

1x1x1, 2x2x2, up to 10x10x10. 

 

During the NVE simulations, we monitor fluctuations in pressure 

and temperature. Notably, the 1x1x1 cell exhibits substantial 

variations in physical parameters throughout the simulation, 

whereas larger cell sizes lead to increased stability, with 

convergence achieved at around the 5x5x5 cell size. 

Furthermore, despite our training set consisting solely of unit 

cell and small supercell data, the trained force field model 

accurately captures variations in physical quantities as the cell 

size changes. This capability is attributed to the treatment of 

local environments within the neural network model. 

 

 

 

 

 

 

Figure 6. (a) Temperature and (b) pressure fluctuations under 

NVE simulations for different sized crystal cells, (c) Trend of 

thermal conductivity as a function of unit cell size. The data 

illustrate the convergence of thermal conductivity values with 

increasing unit cell dimensions 

 

Additionally, we perform convergence testing on the calculated 

thermal conductivity. For a given cell, we independently run 50 

trajectories at 300K to obtain ensemble averages, as shown in 

Fig. 6. The results indicate that convergence is reached with the 

5x5x5 cell, aligning with the trends observed in the earlier 

physical parameter variations. 

 

Thermal Conductivity Calculation 

Following validation of the force field and convergence testing, 

we analyze the thermal transport properties of CuPc. Using a 

5x5x5 cell, we execute fifty independent NVE simulation 

trajectories at the target temperature, employing the LAMMPS 

program. The heat flow computation module has been adapted 

from Tisi’s work, correcting previous errors arising from 

LAMMPS' assumption of symmetry in atomic stress42,56,56.  

 

Figure 7. Heat current autocorrelation function 

 

Based on the heat flow data, we employ the Green-Kubo 

equation to derive the final thermal conductivity results. Taking 

the 300K case as an example, the heat flow autocorrelation 

function is presented in Fig.8, yielding a thermal conductivity of 

0.49 W/mK. In contrast, previous experimental results reported 

a value of 0.39 W/mK, indicating an improved accuracy 

compared to the earlier hybrid-COMPASS-derived value of 1.2 
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W/mK. Given that our CuPc model is a perfect crystal in the 

molecular dynamics simulation, this overestimation of the 

calculated value is anticipated. 

 

Table 3. Thermal conductivities from theoretical calculation 

and experiment 

Thermal 

conductivity 

Experiment57 

(W/mK) 

Hybrid-

compass28 

(W/mK) 

DNN 

(W/mK) 

𝜷-CuPc 0.39 1.1±0.2 0.499±𝟎. 𝟎𝟎𝟖 

We also compute the thermal conductivity of CuPc across 

temperatures ranging from 60K to 360K, generating a 

temperature variation curve as shown in Fig. 9. At lower 

temperatures, diminished atomic random motion reduces 

phonon scattering, leading to increased thermal conductivity. 

The observed relationship of thermal conductivity with 

temperature, characterized by ~𝑇−0.6 , is consistent with the 

principles governing thermal transport in crystalline materials. 

In general, thermal conductivity arises from the collective 

motion of phonons, which are quantized lattice vibrations that 

carry thermal energy. At lower temperatures, phonon 

scattering is minimized, leading to higher thermal conductivity 

as phonons can propagate more freely through the crystal 

lattice. However, as temperature increases, several 

mechanisms contribute to increased phonon scattering. These 

include anharmonic interactions between phonons and the 

scattering caused by defects, grain boundaries, and other 

thermal excitations. Specifically, it implies that the phonon 

mean free path decreases with rising temperature, resulting in 

reduced thermal conductivity. 

 

Figure 8. Trend of thermal conductivity as a function of 

temperature 

Conclusions 

In conclusion, this research successfully demonstrates the 
efficacy of an active learning framework in generating a diverse 
dataset for training a machine learning force field tailored to 

CuPc. The nonlinear mapping capabilities of deep neural 
networks enable the model to effectively capture higher-order 
many-body interactions. The model utilizes a local environment 
matrix for representation without explicitly characterizing the 
metal-organic coordination. Nevertheless, the trained model 
exhibited impressive accuracy, as indicated by low RMSE values 
(Energy: 0.55 meV/atom, Force: 57.9 meV/Å, Virial per atom: 
4.1 meV/atom) and consistency with DFT results, affirming its 
potential for practical applications in predicting molecular 
interactions. Notably, our calculations reveal a thermal 
conductivity of 0.49 W/mK at 300K for the CuPc system, aligning 
well with experimental findings (0.39W/mK). In addition, our 
analysis of thermal conductivity elucidates the relationship 
between temperature and thermal conductivity in CuPc. This 
work serves as an essential progress in demonstrating that the 
introduction of machine-learning force fields can effectively 
characterize the interactions of metal-organic complex systems 
and can significantly advance the development and discovery of 
organometallic thermoelectric materials.  
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