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ABSTRACT
Quantum computing on near-term noisy intermediate-scale quantum devices holds significant promise for simulating complex chemical
systems. Among various variational quantum algorithms, the adaptive derivative-assembled pseudo-Trotter ansatz variational quantum
eigensolver (ADAPT-VQE) is widely used for generating molecule-specific adaptive ansätze for different molecules, yet its measurement
requirement is extensive, calling for suitable optimizers. In this study, we utilize the ADAPT-VQE algorithm enhanced by a powerful opti-
mizer termed sequential optimization with an approximate parabola (SOAP) to calculate molecular energies. These computations are carried
out through classical simulations using the TenCirChem software. Our results demonstrate the efficiency and robustness of the SOAP opti-
mizer for ADAPT-VQE. Furthermore, we show that SOAP performs effectively across different ADAPT-VQE ansatz element pools. This
work presents a strategy to mitigate the substantial measurement requirements associated with ADAPT-VQE.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0296397

I. INTRODUCTION

Quantum computing on near-term noisy intermediate-scale
quantum (NISQ) devices presents promising opportunities for sim-
ulating complex chemical systems.1–5 However, current quantum
computers face significant challenges, including limited qubit con-
nectivity,6 constrained physical resources,7 and susceptibility to
quantum noise.8–10 Before the dawn of the era of fully Fault-Tolerant
Quantum Computing (FTQC),11 to better utilize the capabilities of
existing equipment, joint research efforts of hardware and software
for quantum computing have been undertaken. Quantum computer
hardware has advanced rapidly in recent years, transitioning from
laboratory prototypes to practical quantum chips capable of surpass-
ing state-of-the-art supercomputers in certain tasks.12 Specifically,
superconducting systems,13–15 trapped-ion systems,16–19 and pho-
tonic systems20–22 represent some of the leading development trends
for quantum computing hardware. The development of quantum
computing software is equally crucial.23 In particular, the software
ecosystem encompasses quantum computer simulators and quan-
tum algorithms, both are essential to leverage the capabilities of

modern quantum hardware. Quantum computer simulators allow
for the emulation of quantum environments on classical comput-
ing platforms. Currently, numerous practical software packages are
available, such as Qiskit,24 PennyLane,25 and Q2 Chemistry,26 which
facilitate the research, design, and validation of quantum chem-
istry algorithms. Among these software packages, we developed
TenCirChem, an efficient, open-source Python library designed to
simulate quantum chemistry algorithms, offering low-cost, highly
flexible, and scalable solutions for testing quantum algorithms.27

The search for robust and efficient quantum algorithms
has been a major driving force behind advances in quantum
computing.28–34 The phase estimation algorithm (PEA)35 was the
first quantum algorithm proposed to simulate electronic structure
problems.36–38 Although PEA achieves high computational accu-
racy, its practical deployment is limited by the lengthy and coherent
gate sequences required for precise operation.39 In contrast, the
variational quantum eigensolver (VQE)40 addresses this limitation
by adopting a hybrid quantum–classical approach. By combining a
reconfigurable quantum processing unit (QPU) with a classical opti-
mization algorithm executed on a classical processing unit (CPU),
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VQE significantly reduces the coherence time requirements for
quantum state evolution,40 making it more compatible with NISQ
devices.41,42 However, VQE relies on a preselected ansatz, which
often leads to approximate wave functions and energies, especially
for strongly correlated systems. This approach sacrifices accuracy for
shorter circuit depths, making it less effective for systems requiring
high precision.38

The adaptive derivative-assembled pseudo-Trotter ansatz
variational quantum eigensolver (ADAPT-VQE) algorithm is a
quantum–classical hybrid algorithm that adaptively constructs
a compact ansatz by iteratively adding fermionic operators. It
improves on VQE by eliminating the need for a preselected ansatz,
which often fails for strongly correlated systems. Moreover, by
adaptively building the ansatz through adding operators based on
energy gradients, ADAPT-VQE ensures higher accuracy and com-
pactness while maintaining manageable circuit depth.38 However,
ADAPT-VQE incurs an additional measurement cost due to the
multiple rounds of parameter optimization. The ADAPT-VQE algo-
rithm has many variants. For example, Overlap-ADAPT-VQE43

has several advantages over ADAPT-VQE for strongly correlated
systems because its wave function expansion is achieved by itera-
tively maximizing overlap with intermediate reference states con-
taining partial correlation information, which saves circuit depth
and avoids the overparameterized ansatz caused by the sensitivity
of ADAPT-VQE to local energy minima. Pruned-ADAPT-VQE44

uses an automated and cost-effective refinement technique that
eliminates redundant operators from the ansatz while maintaining
convergence properties, resolving poor operator selection, opera-
tor reordering, and fading operator problems in ADAPT-VQE and
improving algorithm performance. Qubit-ADAPT-VQE45 reduces
circuit depth while maintaining the accuracy of ADAPT-VQE,

making it a promising choice for building hardware-efficient ansatz
(HEA) on quantum computers. TETRIS-ADAPT-VQE46 focuses
on reducing the coherence time of ADAPT-VQE by incrementally
assembling the variational ansatz, incorporating a few operators per
cycle in a manner tailored to the structure of the problem. As the
system scales up, its improvement in circuit depth relative to the
original algorithm becomes more pronounced, bringing the practi-
cal quantum advantage for complex systems closer to realization. In
short, the ADAPT-VQE algorithm represents a significant advance-
ment in quantum computational chemistry, evolving into a family
of methods that can accommodate multiple use cases.

In variational quantum algorithms, the parameter optimizer
is responsible for iteratively adjusting the parameters of a varia-
tional quantum circuit to minimize the value of a cost function.47

An efficient optimizer, especially a gradient-free one, is important
for ADAPT-VQE because it can mitigate the excessive number of
measurements required for high accuracy and better resist interfer-
ence from quantum noise.48 Emphasis on a gradient-free optimizer
is motivated by the difficulty in finding the UCC gradients and
by the performance limitations of NISQ devices. The constrained
optimization by linear approximation (COBYLA)49 algorithm, the
simultaneous perturbation gradient approximation (SPSA) algo-
rithm,50 the Powell’s method,51 and the Nelder–Mead algorithm52

are some of the popular gradient-free optimizers in quantum
computing research.48,53–56 Recently, a new optimizer termed the
sequential optimization with approximate parabola (SOAP) opti-
mizer was reported.48 It accelerates quantum chemical simulations
by sequentially approximating energy landscapes with parabolic
fits and adaptively updating search directions, enabling efficient
parameter correlation modeling and noise suppression with mini-
mal quantum measurements. The SOAP optimizer has a wide range

TABLE I. Energy evaluations required for convergence with various optimizers.

Bond length d

0.5 Å 1.0 Å 1.5 Å 2.0 Å 2.5 Å 3.0 Å

Molecule Method Fa Qb F Q F Q F Q F Q F Q

LiH

SOAP 1015 1015 905 905 743 743 824 824 752 752 203 852
Nelder-Mead 11 733 11 447 7425 8360 5024 4752 6902 6049 7143 6701 8826 8959

COBYLA 5251 5030 3299 4521 3275 4323 3376 3321 4436 2887 4932 3142
Powell 2720 2753 2733 2779 2464 2485 2495 2438 2493 2717 2731 2699
BFGS 219 752 203 432 189 016 177 544 108 384 103 336 112 592 130 720 117 624 118 008 121 104 142 416

BeH2

SOAP 1425 1425 1419 1419 1137 1046 1240 1339 937 1180 2119 6873
Nelder-Mead 16 144 14 129 10 855 11 240 9999 10 007 148 750 13 604 165 595 173 949 103 923 283 377

COBYLA 5621 10 411 5222 7897 6194 5337 4866 7516 17 165 10 069 23 842 28 905
Powell 4047 4049 4229 4154 4287 4292 4604 3927 14 037 12 095 6729 25 119
BFGS 492 264 443 656 368 184 339 976 334 384 294 600 328 960 285 448 1 911 904 1 784 536 794 312 2 743 648

H6

SOAP 2531 2531 2691 2681 2948 4746 2316 34 736 13 104 16 199 1315 766
Nelder-Mead 28 669 29 430 40 716 39 304 747 569 1 237 291 83 675 1 164 132 765 467 28 298 147 727 48 780

COBYLA 8974 9096 10 201 10 346 16 917 40 217 59 885 77 590 21 674 51 508 42 180 14 196
Powell 8633 8342 11 018 10 662 13 854 25 136 58 855 77 131 54 844 48 201 57 122 9433
BFGS 863 112 882 200 641 016 611 448 6 039 360 28 632 392 6 266 832 29 738 776 4 636 112 7 707 752 765 856 468 912

aFermionic ansatz element pool.
bQubit ansatz element pool.
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of advantages, including efficiency, noise resilience, rapid conver-
gence, scalability, and ease of implementation. However, despite its
promising potential, the SOAP optimizer has not yet been inte-
grated with ADAPT-VQE, leaving room for further research and
validation.

In this paper, we combine the ADAPT-VQE algorithm and
the SOAP optimizer for quantum computation of molecular ener-
gies. We test three molecular systems with increasing complexity:
LiH, BeH2, and H6. We compare SOAP with three other classi-
cal gradient-free optimization algorithms: Nelder–Mead, COBYLA,
and Powell. We show the advantages of the SOAP optimizer over
other optimizers through a series of experiments. Our work con-
tributes to the development of the ADAPT-VQE family of algo-
rithms by using the SOAP optimizer, which provides an aver-
age 18-fold speed-up compared to other gradient-free optimizers
(Table I).

II. METHODS
A. ADAPT-VQE algorithm

The ADAPT-VQE algorithm is a greedy algorithm that iter-
atively grows a problem-tailored ansatz by adding one operator
at a time. To begin, an ansatz element pool with a group of
anti-Hermitian operators is defined {P̂m}, where P̂†

m = −P̂m. Dif-
ferent choices are available for this pool, as demonstrated in pre-
vious research.45,57 Then, a reference state, which is usually the
Hartree–Fock (HF) ground state, is chosen as the starting point of
the iterations:

∣Ψref
⟩ = ∣ΨHF

⟩. (1)

For every iteration, the measurement of the expectation value of the
commutator of the Hamiltonian and each ansatz element is per-
formed. The program will terminate if the pool gradient norm is
smaller than a threshold. Otherwise, the ansatz element with the
largest energy gradient will be added to the ansatz. Based on the
new ansatz, a reoptimization for the parameters via VQE will be per-
formed before the algorithm goes to the next iteration. This process
finds the direction at which the energy decreases the fastest until the
energy decrease of pending steps can be ignored.

The proposed algorithm proceeds through the following steps:

1. Hamiltonian preparation: On a classical processor, compute
the one- and two-body integrals and transform the fermionic
Hamiltonian into a qubit representation using an appropriate
mapping (e.g., Bravyi–Kitaev transformation).

2. Ansatz element pool initialization: Define a fixed set of
ansatz elements (operator pool) that will remain unchanged
throughout the algorithm execution.

3. Gradient computation: Initialize the quantum computation
using the HF state as the reference state ∣Ψref

⟩ and the identity
operator as the initial ansatz. For each iteration k, compute the
energy gradient for every ansatz element P̂m in the pool:

∂E
∂θm
∣
θm=0
= [

∂

∂θm
⟨Ψ(k−1)

∣e−θmP̂ m ĤeθmP̂ m ∣Ψ(k−1)
⟩]

θm=0

= ⟨Ψ(k−1)
∣[Ĥ, P̂m]∣Ψ(k−1)

⟩. (2)

4. Termination check and operator selection: Terminate if the
gradient norm falls below a predetermined threshold. Other-
wise, select the ansatz element P̂m with the largest gradient
magnitude, initialize its parameter θm = 0, and append it to the
current ansatz (without modifying the original operator pool):

∣ψ̃m
⟩ = P̂m(θm)∣ψm−1

⟩ =
m

∏
i=1

P̂i(θi)∣Ψref
⟩. (3)

5. Parameter optimization: Reoptimize all variational para-
meters θ = (θ1, . . . , θm) using a hybrid quantum–classical
approach:

θ′ = argmin
θ
⟨Φ(θ)∣Ĥ∣Φ(θ)⟩, (4)

where ∣Φ(θ)⟩ represents the parameterized quantum state.
6. Ansatz update: Construct the new ansatz state with optimized

parameters:

∣ψm
⟩ :=

m

∏
i=1

P̂i(θ′i)∣Ψ
ref
⟩. (5)

7. Iteration: Return to Step 3 and repeat until convergence
criteria are met.

B. SOAP algorithm
The SOAP optimizer is used due to its efficiency, robustness,

flexibility, and gradient-free characteristics, which make it particu-
larly suitable for quantum computing applications.48 This section
systematically presents the SOAP algorithm. We first establish the
theoretical foundations by discussing second-order Møller–Plesset
perturbation theory (MP2) and the line search procedure using the
approximate parabola (LSAP) algorithm. Building upon these con-
cepts, we then detail the operational workflow of the algorithm.
This structured approach provides the reader with a comprehensive
understanding of the SOAP methodology.

The SOAP algorithm is rooted in the intuition that the initial
guess for the UCC ansatz is already well positioned near a highly
favorable local minimum, or even the global minimum. In a typical
UCC calculation, MP2 determines the initial value of parameter θ
for the wavefunction ∣ϕ(θ⃗)⟩ through the equation,

θab
ij =

hijba − hijab

εi + εj − εa − εb
, (6)

in which θab
ij is linked to the excitation from ij orbitals to ab orbitals,

hpqrs denotes the two-electron integral, and εp is the ground-state
energy of the HF state. The optimization performance of an opti-
mizer is determined not only by the optimization techniques it
employs but also by the choice of its initial state. Moreover, an
effective initial guess must be readily accessible to minimize compu-
tational overhead. The effectiveness of MP2 in optimization comes
from two key factors: its ability to efficiently generate high-quality

J. Chem. Phys. 163, 224118 (2025); doi: 10.1063/5.0296397 163, 224118-3

Published under an exclusive license by AIP Publishing

 04 January 2026 01:37:03

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

initial parameter estimates through computationally inexpensive
calculations and its robust performance validation across experi-
mental data. Notably, empirical studies have consistently demon-
strated its efficacy for both weakly and strongly correlated systems.
Although generating initial parameters θ⃗ through MP2 theory pro-
vides excellent starting points, alternative initialization schemes can
be employed in practice. In our previous work, we have shown that
SOAP performs well with the initial guess θ⃗ = 0, which conveniently
reduces the parameterized state ∣ϕ(θ⃗)⟩ to the HF state.

The LSAP algorithm serves as the core component of the SOAP
algorithm. As mentioned above, the SOAP algorithm is based on
the assumption that the vector parameter θ is very close to the
minimum, where the energy can be approximated through

E(θ⃗ + xv⃗) ≈ ax2
+ bx + c, (7)

in which the left-hand side is the energy approximation for θ⃗ step-
ping on an arbitrary direction ν⃗. The right-hand side represents a
parabolic approximation with coefficients a, b, and c. The coeffi-
cients can be solved via three energy evaluations, followed by a shift
of (− b

2a)v⃗ added to θ⃗. Through continuously implementing this pro-
cedure, θ⃗ moves closer and closer to the minimum until a certain
condition is satisfied, then the parabola fit is accomplished.

In the above introduction, there are two key quantities, ν⃗ and
x. The direction vector ν⃗ is within a list of directional vectors
V = [v⃗1, v⃗2, . . . , v⃗N]. The direction vector list is variational and
changes as the program progresses, which gives the algorithm good
flexibility. The small scalar xm is defined by

xm = mu, m ∈ Z, (8)

where u is a constant. Based on this definition, we define ym as

ym = E(θ⃗i−1 + xmν⃗i). (9)

Here, θ⃗i−1 is the parameter from the previous optimization, and xmν⃗i

represents a shift for θ⃗i−1 in the direction ν⃗i with amplitude xm. This
energy measurement step will be performed by a quantum computer
in a real application. Then, based on (7), in which three energy eval-
uations are required for the approximation, the parabola fit will be
made. Because the vector parameter θ⃗ is very close to the minimum,
here we choose m = −1, 0, 1 and define the data set for the parabola
fit as

S = {(xi, yi) ∣ i = −1, 0, 1} = {(x−1, y−1), (x0, y0), (x1, y1)}

= {(−u, y−1), (0, y0), (u, y1)}. (10)

Two energy measurements, together with an energy input E(θ⃗i−1)

from the previous optimization, are combined to form this data set.
However, certain edge cases emerge when the initial guess x0

lies far from the true minimum, resulting in failed energy con-
vergence. This challenge is particularly pronounced for strongly
correlated systems. To improve algorithmic universality, we intro-
duce a specialized modification scheme to handle these exceptional
cases. It adds (x4, y4) to the data set S and fits the parabola through
the least-squares method:

min ∑
(xi ,yi)∈F

(ax2
i + bxi + c − yi)

2. (11)

This modification not only resolves the problem of corner cases but
also avoids adding undue complexity to the algorithm.

In addition, the algorithm can be further simplified when x0
is sufficiently close to the minimum. To avoid extensive measure-
ments, we can calculate the energy through

E(θ⃗i) = c −
b2

4a
. (12)

This simplification maintains the accuracy of the algorithm and
improves its computational efficiency.

The algorithm proceeds through the following steps:

1. Initialization: Receive the previous optimization parameters
θ⃗i−1, energy Ei−1, and current direction vector ν⃗i as inputs.

2. Formulate S: Perform energy evaluations along the search
direction:

S = {(x−1, y−1), (x0, y0), (x1, y1)},

where

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

y−1 = E(θ⃗i−1 + x−1v⃗i),

y1 = E(θ⃗i−1 + x1v⃗i),

y0 = Ei−1.

(13)

3. Corner case handling: Identify the minimum energy point
ym = min(y

−1, y0, y1):

● If ym = y0, proceed to Step 4.
● If ym = y

−1, set k = −4.
● If ym = y1, set k = 4.

Evaluate yk = E(θ⃗i−1 + xkv⃗i):
● If ym < yk, expand S with (xk, yk).
● Else, update θ⃗i ← θ⃗i−1 + xkv⃗i, Ei ← yk and jump to Step

7.

4. Parabolic fitting: Determine coefficients (a, b, c) for model
y = ax2

+ bx + c using S.
5. Parameter update: Compute the new parameters:

θ⃗i = θ⃗i−1 −
b

2a
v⃗i. (14)

6. Energy evaluation:

Ei =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

c −
b2

4a
if S has 3 elements,

E(θ⃗i) if S has 4 elements .
(15)

7. Output: Return the optimized parameters θ⃗i and energy Ei.

Following our detailed analysis of MP2 theory and the LSAP
algorithm, particularly their ecological niches within the SOAP
framework, we now provide the procedures of the SOAP algorithm.

The SOAP algorithm initializes with MP2 amplitudes as start-
ing parameters θ⃗0, computing the initial energy E0 = E(θ⃗0). A direc-
tion set V is initialized to provide candidate search directions for
optimization. During each iteration, for each candidate direction
v⃗i ∈ V, SOAP uses LSAP to identify a local energy minimum in the
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subspace spanned by v⃗i, yielding updated parameters θ⃗i, and energy
Ei = E(θ⃗i). Then the energy reduction Δi = Ei−1 − Ei quantifies the
optimization progress along each direction. The algorithm tracks
the largest Δi observed, identifying the most promising direction for
subsequent refinement.

A key feature of SOAP is its adaptive direction set update
mechanism based on Powell’s method, a classical unconstrained
optimization technique.51 Before we begin the discussion, let us start
with some definitions to better understand this section. θ⃗0 and θ⃗N are
defined as the set of parameters before and after iteration over V. E0

and EN are the measured energies for θ⃗0 and EN , respectively. After
evaluating the extrapolated energy Eext = E(2θ⃗N − θ⃗0) to probe the
energy landscape beyond the current parameters, conditional checks
determine whether to retain or replace candidates in V: if Eext ≥ E0
(indicating non-improving extrapolation) or the condition

2(E0 − 2EN + Eext)[(E0 − EN) − Δ] ≥ (E0 − Eext)
2Δ (16)

is satisfied, the iteration skips further updates. Otherwise, the least
effective direction (vj, associated with the highest recorded Δ) is
removed from V, and a new direction based on the normalized dis-
placement θ⃗N−θ⃗0

∣θ⃗N−θ⃗0 ∣
is prioritized in front of V. This strategy biases the

search toward regions of significant energy reduction while discard-
ing inefficient directions, combining local subspace approximations
(via LSAP) for fine-grained minimization with global direction
updates (via Powell’s algorithm) to escape local minima.

The process repeats until convergence, eventually producing
optimized circuit parameters θ⃗opt at the minimum energy and the
corresponding minimum energy E(θ⃗opt). The efficiency of SOAP
lies in its hybrid approach: by integrating local energy minimiza-
tion with global adaptive directionality, it accelerates convergence
in quantum circuit optimization tasks, particularly when navigat-
ing complex energy landscapes where efficient search directions are
critical for performance.

The total framework of our algorithm, which combines
ADAPT-VQE with SOAP, is shown in Fig. 1. In subsequent sec-
tions, we refer to the iterative process within the overall ADAPT-
VQE framework as the “outer iterations,” while designating the
optimizer-level iterations within the SOAP module as “inner
iterations.”

III. RESULTS AND DISCUSSION
The SOAP optimizer represents a specialized gradient-free

optimization method specifically developed for quantum com-
puting applications. To systematically evaluate its performance
within the ADAPT-VQE framework, we conduct comparative stud-
ies with three established gradient-free optimizers: Nelder–Mead,
COBYLA, and Powell. Our testbed comprises molecular sys-
tems of increasing complexity, including LiH, BeH2, and H6.
All numerical simulations are performed classically using Ten-
CirChem27 to emulate quantum computing environments, as illus-
trated in Fig. 1. This controlled experimental setup enables rigorous

FIG. 1. Algorithm framework of the ADAPT-VQE method with the SOAP optimizer. The purple container (main structure) encompasses the components of the ADAPT-VQE
algorithm, while the embedded yellow section exclusively handles the optimization subroutine execution via the SOAP optimizer. The “Operator unchanged” box in this
context specifically represents “If the operators chosen in two consecutive iterations are the same” in the algorithmic process. The “Powell’s condition” refers to the core
decision criterion (16) in Powell’s algorithm.
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benchmarking of SOAP’s performance against conventional opti-
mization approaches.

Notably, in our implementation, we initialize all parameters
θ⃗ = 0, which directly yields the HF state ∣ϕ(0⃗)⟩ = ∣HF⟩. This choice
simplifies the initialization procedure while remaining consis-
tent with the overall algorithmic framework. Although we adopt
this straightforward initialization scheme in the present work,
alternative approaches—including but not limited to MP2-based
initialization—warrant investigation in future studies to further
assess the algorithm’s performance.

This study systematically evaluates optimizer performance
through two complementary approaches: (1) ideal molecular sim-
ulations without noise and (2) realistic simulations incorporating
Gaussian noise. In both regimes, we examine molecular systems
across various bond lengths to assess robustness under different
electronic configurations. To ensure comprehensive evaluation, we
employ two distinct ansatz element pools (operator pools) funda-
mental to the ADAPT-VQE protocol: the fermionic pool38 (con-
sisting of fermionic excitation operators) and the qubit pool45

(composed of Pauli string operators). These pools represent funda-
mentally different approaches to ansatz construction in variational
quantum algorithms. Our findings demonstrate that the SOAP
optimizer maintains consistent performance across both operator
pools, highlighting its versatility under different ansatz construction
paradigms.

A. Molecular simulation without noise
The computational efficiency of variational quantum algo-

rithms can be quantified by the number of quantum circuit exe-
cutions required to achieve a target precision in the measured
observable. Here we conduct a preliminary comparison of quan-
tum algorithm performance under different optimizers by counting
the number of algorithm calls to the energy evaluation function
without noise (Table I). We choose five optimizers, including four
gradient-free optimizers (SOAP, Nelder–Mead, COBYLA, and Pow-
ell) and a gradient-based optimizer (BFGS). In this phase, we
impose no constraints on either the maximum number of outer
iterations or required precision, instead relying on the algorithm’s
self-terminating conditions as the stopping criterion. Each table
cell is divided into two parts: the left side shows the result for the
“fermionic ansatz element pool,” and the right side shows the result
for the “qubit ansatz element pool.”

Our systematic evaluation of convergence efficiency across four
gradient-free optimizers demonstrates the superior performance
of SOAP in quantum chemistry simulations within the ADAPT-
VQE framework (Table I), showing an average of 18-fold speed-up
compared to other gradient-free optimizers. For LiH, the sim-
plest test case, SOAP consistently converged with 200–1015 energy
evaluations across all bond lengths (0.5–3.0 Å), representing effi-
ciency improvements of 3.8× over Powell (2464–2779 evaluations),
4.6× over COBYLA (2887–5251), and 11.6× over Nelder–Mead
(4752–11733). This performance advantage becomes more pro-
nounced in complex systems: for BeH2 at 2.5 Å using the fermionic
ansatz pool, SOAP required only 937 evaluations compared to
17 165 (COBYLA), 14 037 (Powell), and 165 595 (Nelder–Mead),
corresponding to efficiency gains of 18.3×, 15.0×, and 176.8×,
respectively.

In challenging H6 optimizations, the overall data exhibit a
distinct volcano-shaped distribution for the optimizers, where the
evaluations of both short and long bond lengths are relatively low,
while the evaluations of intermediate bond lengths are significantly
higher. Remarkably, SOAP’s maximum evaluation count for H6
(34 736 at 2.0 Å qubit ansatz) remained 2.2× lower than COBYLA’s
worst H6 performance (77 590 at 2.0 Å qubit ansatz) and represented
merely 2.8% of Nelder–Mead’s worst-case requirement (1 237 291 at
1.5 Å qubit ansatz).

Also, SOAP maintained its benchmark-leading efficiency inde-
pendent of ansatz selection, achieving identical fermionic/qubit
evaluation counts in 58% of LiH tests. This contrasts sharply with
COBYLA, which exhibited >100% variance in critical cases (e.g.,
BeH2 at 0.5 Å: 5621 evaluations for fermionic vs10 411 for qubit
ansatz). These results establish SOAP’s unique capability to reduce
variational optimization costs while guaranteeing stability in broad
quantum chemical regimes.

Comparison between gradient-free optimizers and the
gradient-based optimizer BFGS shows that BFGS is substantially
more computationally expensive, requiring one to two orders of
magnitude more evaluations than gradient-free optimizers. This
is because BFGS relies on the parameter-shift rule, which requires
measuring the gradient with respect to each parameter individually,
leading to a large number of quantum measurements, especially
when the number of parameters is large. In contrast, SOAP deter-
mines gradients by measuring only the overall energy of the circuit.
As a result, SOAP requires significantly fewer measurements and
demonstrates better performance compared to BFGS. Here we only
conduct a preliminary comparison and will not include it in the
following discussion.

In particular, our experimental results reveal unexpected
behavior of the SOAP optimizer in LiH systems. While it is fre-
quently assumed that different ansatz element pools should lead
to distinct ansatz growth patterns under the ADAPT-VQE frame-
work and consequently different convergence characteristics, SOAP
exhibits remarkable consistency in certain cases. For traditional opti-
mizers (Nelder–Mead, COBYLA, and Powell), the number of energy
evaluations indeed varies significantly between fermionic and qubit
pools, as theoretically expected. However, SOAP demonstrates iden-
tical convergence efficiency across both pool types in five LiH test
cases (bond lengths 0.5–2.5 Å), despite producing fundamentally
different quantum circuits. This is because SOAP by default sets
0.001 hartree as the convergence criterion, which is smaller than the
energy difference of the fermionic and qubit pools.

We additionally analyzed the ansatz structures generated by
SOAP on LiH systems (Table II). The results show that different
ansatz element pools produce different ansatz. This is demonstrated
by the different gate numbers, different CNOT gate numbers, dif-
ferent circuit depths, etc. At the same time, we find that the qubit
ansatz element pool yields fewer gates, fewer CNOT gates, and shal-
lower circuit depth than the fermionic ansatz element pool, offering
lateral support for prior research.45

While Table I provides a useful comparison, its conclusions are
limited because the experimental setup did not adequately control
for computational conditions (i.e., result accuracy may have varied
between runs). To address this limitation, we apply uniform crite-
ria in subsequent analyses: a fixed number of ADAPT-VQE outer
iterations and comparable solution accuracy. Since the LiH molecule
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TABLE II. Basic information for ansatz for ADAPT-VQE on LiH with fermionic and qubit ansatz element pools at convergence.

Bond length d

0.5 Å 1.0 Å 1.5 Å 2.0 Å 2.5 Å

Parameter Fa Qb F Q F Q F Q F Q

Energy evaluations 1015 1015 905 905 743 743 824 824 752 752
Variational parameters 21 21 20 20 18 18 19 19 18 18
Gate count 454 210 424 196 356 168 398 182 364 168
CNOT gates 354 172 330 160 278 136 314 148 286 136
Qubits 12 12 12 12 12 12 12 12 12 12
Circuit depth 257 123 247 100 201 87 227 105 210 92
Multicontrol gates 26 26 26 24 20 20 22 22 20 20
aFermionic ansatz element pool.
bQubit ansatz element pool.

is relatively simple, we select it for comparison and plotted a series of
graphs showing how optimization accuracy varied with the number
of ADAPT-VQE outer iterations (see Fig. 2).

In Fig. 2, we can see that the four gradient-free optimizers share
similar dissociation curves for LiH at different bond lengths. That
is because they all work under the ADAPT-VQE framework with-
out Gaussian noise. Figure 2 reveals that for the fermionic ansatz
element pool, the energy calculations for the LiH molecule achieve
satisfactory accuracy (<1.6 × 10−3 hartree) with an ADAPT-VQE
outer iteration of 15, across all tested bond lengths. In brief, setting
the outer iteration of the ADAPT-VQE algorithm to 15 is feasible.

Thus, we evaluate the performance of the four algorithms when
setting the outer iterations to 15, which corresponds to the same
accuracy for different optimizers (Table III). Analysis of total energy
evaluations (summing fermionic and qubit pools) demonstrates that
the SOAP optimizer significantly accelerates convergence compared
to all other tested gradient-free methods (Nelder–Mead, COBYLA,
Powell) across LiH bond lengths (0.5–3.0 Å) for ADAPT-VQE (15
iterations). Specifically, SOAP achieves the most dramatic acceler-
ation vs Nelder–Mead, where reductions in evaluations range from
77% (at 3.0 Å) to 90% (at 0.5 Å), consistently exceeding a 77% reduc-
tion overall and reflecting an order-of-magnitude efficiency gain.

FIG. 2. Dissociation curves of LiH at different bond lengths for the fermionic ansatz element pool. The horizontal axis represents the outer iterations of the ADAPT-VQE
algorithm, and the vertical axis represents the difference between the calculated energy and the exact energy, where ΔE = Eapprox − EFCI. The dashed lines show the
chemical accuracy threshold (1.6 × 10−3 hartree).
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TABLE III. Number of energy evaluations required for convergence for SOAP and other gradient-free optimizers on LiH with ADAPT-VQE (15 outer iterations).

Bond length d

0.5 Å 1.0 Å 1.5 Å 2.0 Å 2.5 Å 3.0 Å

Method Fa Qb F Q F Q F Q F Q F Q ec

SOAP 551 551 530 530 530 530 532 532 539 539 203 560 2.36 × 10−4

Nelder-Mead 5215 6022 5645 6845 4098 3798 5691 4961 6007 5117 4824 4507 2.09 × 10−4

COBYLA 2150 2080 1736 1911 1623 1718 1876 1834 1765 1889 1606 1638 2.09 × 10−4

Powell 1563 1556 1593 1558 1377 1404 1455 1409 1410 1427 1466 1470 2.20 × 10−4

aFermionic ansatz element pool.
bQubit ansatz element pool.
cMean error across all experimental conditions for the corresponding optimizer.

FIG. 3. (a, c) Potential energy surface and (b, d) error for the gradient-free optimizers under the ADAPT-VQE framework for the fermionic ansatz element pool. The molecular
systems for (a) and (b) are LiH systems with different bond lengths, while the molecular systems for (c) and (d) are H6 systems with different bond lengths. The Gaussian
noise added is 0.001 hartree. The reference values are the FCI results. The dashed line in the right panel shows the chemical accuracy threshold (1.6 × 10−3 hartree).

J. Chem. Phys. 163, 224118 (2025); doi: 10.1063/5.0296397 163, 224118-8

Published under an exclusive license by AIP Publishing

 04 January 2026 01:37:03

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Similarly, SOAP maintains a substantial advantage over COBYLA,
achieving significant acceleration exceeding 50% at nearly every
bond length, with values spanning from 51% (1.5 Å) to 59% (3.0 Å),
resulting in consistent computational savings exceeding half the
cost. Even when compared to the relatively more efficient Powell

method, SOAP still delivers meaningful efficiency improvements;
specifically, reductions range from 40% (1.0, 1.5 Å) to 50% (2.0,
3.0 Å), confirming SOAP’s superiority despite Powell’s baseline per-
formance. Therefore, while a slight increase in qubit evaluations of
SOAP at 3.0 Å warrants observation, the overwhelming, consistent

FIG. 4. Convergence curve for gradient-free optimizers including SOAP based on noisy simulation for the fermionic ansatz element pool. Gaussian noise with a standard
deviation of 0.001 hartree is added to the simulation process. For each optimization technique, the standard deviation from ten independent simulations is used to form the
semi-transparent regions. The [(a)–(c)], [(d)–(f)], and [(g)–(i)] panels are for the LiH, BeH2, and H6 molecules, respectively. From left to right, the bond length ranges from
d = 1.0 Å to d = 3.0 Å.
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trend across the dataset clearly establishes SOAP as the most com-
putationally efficient gradient-free optimizer for this task, achieving
profound resource savings (up to 90%) over common alternatives
and significant savings (40%–59%) even against the best-performing
comparator. In short, SOAP outperforms all other gradient-free
optimizers when setting the outer iterations to 15.

The above experiments and analysis reveal that the SOAP
optimizer outperforms other gradient-free optimizers within the
ADAPT-VQE framework when not considering Gaussian noise.
Whether in the case of allowing natural termination of the ADAPT-
VQE algorithm or in the case of setting the outer iteration of the
ADAPT-VQE algorithm to 15 to get similar and satisfactory accu-
racy, SOAP outperforms all other optimizers with far fewer energy
evaluations and good stability when changing the ansatz element
pool.

B. Molecular simulation with noise
Previous sections established the superior performance of the

SOAP optimizer compared to other gradient-free optimizers in
noiseless ADAPT-VQE simulations. However, real quantum com-
puting systems inevitably contain noise. While our initial computa-
tional experiments demonstrated the method’s efficiency, they did
not fully assess its robustness under practical conditions. To bridge
this gap, we examine SOAP’s performance in noisy environments by
incorporating Gaussian-distributed random noise (sampled during
each energy evaluation) to simulate realistic quantum hardware con-
ditions. The subsequent analysis primarily focuses on the fermionic
ansatz element pool.

We first evaluate optimization accuracy at convergence (Fig. 3)
for LiH and H6 systems across various bond lengths, using a Gaus-
sian noise level of 0.001 hartree. Two reference benchmarks are
included: the HF energy (optimization starting point) and the full

configuration interaction (FCI) energy (exact theoretical target).
Figure 3 shows that SOAP consistently achieves the highest accuracy
for both LiH and H6 systems, with results closest to the FCI energy.
In contrast, Nelder–Mead shows problematic convergence behav-
ior, stalling near the initial HF energy. COBYLA and Powell display
intermediate performance, with neither consistently outperforming
the other across different test cases. For the H6 system, the accu-
racy of SOAP is more pronounced for shorter bond lengths, while it
deteriorates as the bond length increases.

Then, we explore the behavior of different optimizers for differ-
ent molecular systems for the fermionic ansatz element pool (Fig. 4).
Gaussian noise with a standard deviation of 0.001 hartree is added
to the simulation process. To better present our data, the energy
values are rescaled by the correlation energy Ecorr = EHF − EFCI. Our
ADAPT-VQE optimization procedure uses the HF state as the initial
state and optimizes toward the exact energy of the molecular sys-
tems, which can be calculated via the FCI approach. When the value
on the vertical axis approaches 1, it indicates closer proximity to the
FCI energy, while values approaching 0 signify closer proximity to
the HF energy. For each optimizer, we perform ten energy evalu-
ations to determine the mean value and the standard deviation of
the correlation energy. For all experiments associated with the sub-
figures, the SOAP optimizer shows much better performance than
other optimizers. Conversely, the Nelder–Mead optimizer exhibits
suboptimal performance for all the experiments, as it is unable
to resist the interference of quantum noise and terminates at low
accuracy. In LiH systems, SOAP reaches high accuracy (over 90%
correlation energy) at around 100 energy evaluations, while most
of the other optimizers converge incorrectly under low-precision
conditions. Even for the better cases (COBYLA, d = 3.0 Å; Pow-
ell, d = 3.0 Å), the optimizers are still less efficient and less precise
than SOAP. In BeH2 systems, things get more complicated. In some
cases (d = 1.0 Å, d = 2.0 Å), SOAP shows much better robustness

FIG. 5. (a) Probability density distribution and (b) Heatmap of correlation energy for gradient-free optimizers including SOAP based on noisy simulation for the fermionic
ansatz element pool. The molecular system of interest is LiH. Gaussian noise with a standard deviation of 0.001 hartree is added to the simulation process. The horizontal
axis represents the selected maximum number of calls for the optimizers, which are 50, 100, 150, 200, 250, and 300 times, respectively. The vertical axis represents the
bond length of the molecule.
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FIG. 6. Convergence curve for SOAP, COBYLA, and Powell based on noisy simulation for the fermionic ansatz element pool. Gaussian noise with standard deviations of
0.0015, 0.0020, and 0.0025 hartree is added to the simulation process. For each optimization technique, the standard deviation from four independent simulations is used
to form the semi-transparent regions. A uniform bond length of 1 Å was used for all molecular systems.

and precision. For the case where d = 3.0 Å, the advantages of SOAP,
though not particularly pronounced, are still present. In H6 sys-
tems, SOAP reaches high accuracy (∼90% correlation energy) for
some cases (d = 2.0 Å, d = 3.0 Å). For the special case (d = 1.0 Å),

the correlation energy of SOAP at the right-hand side is around 0.7
when the computation is still underway. After checking the data,
we find SOAP terminates at 91.43% correlation energy after 1096
energy evaluations, reaching high accuracy and outperforming all
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its competitors at that stage (COBYLA: 59.43% after 240 evalua-
tions; Powell: 67.99% after 2320 evaluations). An additional aspect
of concern in our experiment is the standard deviation of the inde-
pendent simulations, which is represented by the semi-transparent
regions. The semi-transparent regions indicate the robustness of
the optimizers, corresponding to their noise resistance and mea-
surement stability. In general, the standard deviations of SOAP
and COBYLA are smaller, while the standard deviation of Pow-
ell is much larger. However, the COBYLA optimizer, even with a
small standard deviation, still suffers severely from false termination
problems. Thus, the robustness of SOAP is still the best among the
optimizers, with a small standard deviation and resistance to pre-
mature termination. In short, the SOAP optimizer outperforms all
other gradient-free optimizers under noisy conditions, in terms of
efficiency and robustness.

To further demonstrate the power of the SOAP algorithm, we
designed another set of experiments. Under conditions when the
noise is 0.001 hartree and the maximum number of optimizer calls is
limited, we compare the final computational accuracy, which is rep-
resented by the size of the correlation energy. The selected maximum
numbers of calls for the optimizers are 50, 100, 150, 200, 250, and
300, respectively. Here, we display the probability density distribu-
tion as well as the heatmap to provide a more intuitive visualization
of the data (Fig. 5). Despite their differing formats, both charts depict
identical underlying data. Clearly, the SOAP optimizer is the best
among gradient-free optimizers. Except for one very special case
(d = 0.5 Å, max iteration = 50), all regions corresponding to SOAP
show a red coloration. Within the red regions, a significant propor-
tion is dominated by deep red, which corresponds to the correlation
energy of over 0.9. In contrast, the Nelder–Mead optimizer does not
perform well for noisy simulation due to its premature termination,
as shown in Fig. 4.

All regions corresponding to Nelder–Mead show a blue col-
oration, providing a clear illustration of what happens when
Nelder–Mead fails to optimize. COBYLA and Powell share a com-
mon feature. At a small bond length (d = 0.5 Å), even with increased
iterations, they can hardly optimize accurately. For SOAP, this phe-
nomenon does not exist, indicating that it can still achieve significant
success even under challenging conditions. In this visualization,
COBYLA appears to perform a bit better than Powell, as it can reach
higher accuracy at a small number of maximum iterations (max iter-
ation = 50, 100). Overall, COBYLA exhibits more red regions than
Powell in the heatmap. In the probability density distribution, the
region where the correlation energy exceeds 90% is dominant when
using SOAP, whereas the region with correlation energy below 90%
becomes dominant when using Nelder–Mead. COBYLA outper-
forms Powell because its correlation energy peaks are overall shifted
to higher values, indicating higher accuracy in energy calculations.
The convergence of results from these two independent visualization
approaches establishes cross-verification.

Still, the energy error of 0.001 hartree is a high requirement for
near-term quantum devices. Therefore, we conduct an additional
experiment with increasing noise levels to observe the behavior of
the optimizers under progressively noisier conditions. The optimiz-
ers selected for presentation include SOAP, COBYLA, and Powell.
Although the Nelder–Mead optimizer is also studied in previous sec-
tions, it exhibits unsatisfactory performance under noisy conditions
and is therefore deemed not suitable for inclusion in the discussions

here. The molecular systems we choose are LiH (d = 1 Å), BeH2
(d = 1 Å), and H6 (d = 1 Å). We investigate the behaviors of the sys-
tems when the noise increases from 0.0015 to 0.0025 hartree (Fig. 6).
For each optimizer, we perform four energy evaluations to deter-
mine the mean value and the standard deviation of the correlation
energy. We choose this number because it is easier for the optimizers
to prematurely terminate when the noise increases, so we perform
fewer energy evaluations to avoid bad truncation. In scenarios where
other optimizers converge prematurely with lower accuracy under
high-noise conditions, SOAP demonstrates strong noise resistance,
ensuring stability, high precision, and a relatively fast convergence
rate. This indicates its adaptability to the high energy measurement
errors typical in near-term quantum devices.

Based on all the above results, we rank the optimizers
under noisy conditions within the ADAPT-VQE framework: SOAP
> COBYLA ≈ Powell > Nelder–Mead. SOAP clearly outper-
forms others in both efficiency and robustness. Nelder–Mead
shows limitations in dealing with quantum computing problems.
COBYLA converges faster than Powell, while Powell is more robust.
Their accuracy is comparable, with performance varying across
conditions.

IV. CONCLUSION
In conclusion, this work contributes to the ADAPT-VQE algo-

rithm by applying the SOAP optimizer for the optimization pro-
cess. We first demonstrate the efficiency of ADAPT-VQE + SOAP
through quantum circuit simulation without noise. Table I shows
that SOAP offers an average speed-up of 18 times compared to
other gradient-free optimizers. Then, we focus on the LiH system
and compare the required energy evaluations when setting the outer
iteration of ADAPT-VQE to 15 (Table III). The molecular simula-
tion with noise further proves the efficiency of SOAP. Moreover, we
move to simulation with the addition of quantum circuit measure-
ment noise, which is modeled through Gaussian noise. We find that
SOAP maintains good accuracy after adding Gaussian noise. Study
of the optimization process for the optimizers reveals that SOAP
stands out for its high accuracy and resistance to measurement noise
on quantum computers. The distribution of correlation energies for
different optimizers based on the LiH systems shows that, with the
addition of Gaussian noise, SOAP recovers most of the correlation
energy and outperforms other optimizers. In general, the results of
the molecular simulation show that, within the ADAPT-VQE algo-
rithm framework and for different ansatz element pools, the SOAP
optimizer outperforms other gradient-free optimizers. The rank of
optimizers is SOAP > COBYLA ≈ Powell > Nelder–Mead.

Another important aspect of our work is that we use Ten-
CirChem to simulate the quantum environment on classical com-
puters. This shows the importance of quantum simulation tools
for speeding up the development of quantum computing. Although
research on quantum computing hardware is irreplaceable, quantum
simulation tools offer a more flexible, cheaper, and faster option.
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