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ABSTRACT: Although the carbene-catalyzed N2 fixation process
had been investigated by scientists for decades prior to borylene
species, the interest in the carbene-mediated N2 activation process
has drawn less attention than that of borylene species in the past
few years, especially unique σ0π2 carbenes. Herein, we demonstrate
the important role of unique σ0π2 carbenes in the 1,1-hydro-
boration and bis-carbene functionalization of N2 using density
functional theory calculations. Both being kinetically and
thermodynamically favorable, the reaction barriers are as low as
13.7 and 16.6 kcal/mol, respectively. Additionally, such a σ0π2

carbene can also achieve a series of X−H insertion reactions (X =
H, CH3, Bpin, or SiH2Ph), with activation energies ranging from
8.2 to 15.3 kcal/mol. Our findings highlight a strong potential of
carbenes with σ0π2 electronic configuration in N2 activation and its versatile transformations, providing valuable insights into main-
group-element-mediated N2 activation chemistry.

■ INTRODUCTION
Dinitrogen (N2), the most abundant and “cheapest” source of
nitrogen, is virtually inexhaustible. However, due to its extreme
inertness, it is notoriously difficult to activate and transform.1

Undoubtedly, achieving the activation and direct trans-
formation of N2 under mild conditions represents a significant
scientific challenge that urgently needs to be addressed.2 In
nature, nitrogenase enzymes can achieve N2 conversion under
mild conditions;3 however, industrially, the Haber−Bosch
process remains the predominant method for converting N2
into ammonia (NH3) using transition metal (TM) catalysts,
primarily for fertilizer production.4,5 This process accounts for
approximately 2% of global energy consumption annually.6 To
date, almost all TM-N2 complexes across the periodic table
have been reported, thanks to the synergistic interaction
between occupied and unoccupied d-orbitals of TMs (Figure
1a).7−17 Besides metal catalysts, nonmetallic approaches to N2
activation offer an alternative solution.18−22 Recently,
Branuschweig and co-workers demonstrated that by modifying
the electronic environment of boron atoms stabilized by
CAAC [(CAAC = cyclic (alkyl)(amino)-carbene]23 ligands, it
is possible to achieve B-center binding,24 reduction, dimeriza-
tion,25 and direct protonation of N2.26,27 This landmark work
has laid the foundation for subsequent research into main-
group-element-mediated N2 activation,28−30 including species
such as beryllium,31 low-valent alkaline earth (Ca32 and Mg33)
metal species, substituted boranes,34,35 and divalent boron
radicals.36

Carbenes, as highly reactive species, play a crucial role in
both TM-catalysis and main-group chemistry.37−42 Since the
observation of N2 exchange in diazomethane, carbene species
have been considered excellent candidates for the direct
construction of C−N bonds in nitrogen-containing organic
compounds. In 1964, Moore and co-workers discovered that
under matrix conditions, carbenes generated from the
photolysis of diazomethane could reversibly bind to N2,43 a
finding confirmed by isotopic labeling and later supported by
mass spectrometry and infrared spectroscopy evidence from
Shilov et al.44 Concurrently, Braun, Herzberg, and Eder
demonstrated that pressure is a key factor influencing the
binding of singlet and triplet carbenes to N2.45 Thereafter,
Zollinger et al. showed that, under solution conditions, only
those organic species with a strong electrophilic character (i.e.,
possessing empty s-orbitals) and capable of effective π-electron
feedback and donation can bind to N2.46 They also highlighted
that overcoming the rapid intersystem crossing between singlet
and triplet states enhances the reactivity of carbenes with N2 in
solution. On the other hand, theoretical chemists have also
maintained a keen interest in the reactions between carbenes
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and N2. In 2003, Akasaka et al. demonstrated that the
decomposition products of diazo-compounds can be classified
as carbenes, diazo intermediates, or mixtures thereof, depend-
ing on the substituents on the substrate.47 In 2012, Kim and
co-workers showed through theoretical calculations that the
cyclic diphosphinocarbenes (PHC) exhibit promising charac-
teristics as an efficient catalyst for catalyzing N2 to NH3,
attributed to the strong electron-donating ability of the carbene
carbon atom.48 Miliordos’ research indicated that carbene pair
with σ1π1 ground states can still activate N2 using their excited
σ2π0 states upon a perpendicular approach.49 Meanwhile,
similar studies on the binding of carbene carbon atoms with N2
have also been reported.50 In 2021, Lee’s studies revealed that
the large interaction energy between the SOMOs of anionic
cyclic amino carbene radicals and the antibonding orbitals of
N2 is a critical factor for the low reaction barrier of N2 by these
carbenes.51 Additionally, inspired by the excellent performance
of frustrated Lewis pairs (FLPs) in small molecule activation,52

Zhu’s group designed a series of “carbene-boron” type FLPs,
predicting thermodynamically and kinetically favorable N2
activation, which provides new insights into N2 fixation
chemistry.53−58 Their research also emphasized strategies
involving molecules with dual Lewis acidity sites for N2
activation, such as boron-substituted fluorene frameworks59

and B4N2 inorganic benzene.60

Despite the early synthesis of the first σ0π2-configured
carbene by Maier and Endres in 1999 through reversible
photolysis of 2H-imidazole-2-ylidene61 and the subsequent
design strategy proposed by Borden and Hoffmann in 2013 to
introduce sp2-hybridized nitrogen atoms adjacent to the cyclic
carbene carbon,62 thereby destabilizing its σ-orbitals and
stabilizing its 2pπ-orbitals, significant experimental progress in
isolating such carbenes was not achieved until very recently.

Inspired by the previous work,63 Liu’s group successfully
isolated a rhodium-coordinated cyclic diphosphinocarbene
crystal, marking a major breakthrough in σ0π2-configured
carbene chemistry.64 Subsequently, our group predicted via
computational modeling that σ0π2-configured carbenes could
activate N2 and achieve hydroboration of the coordinated N2,
highlighting the strong potential of these unique electron
configurations in N2 activation.65 However, reports on the
activation of N2 by σ0π2-configured carbenes remain extremely
scarce, and studies on the diverse transformations of
coordinated N2 are relatively limited.66 To further explore
the possibilities in this field, we conducted systematic research
to uncover the unique role of σ0π2 carbenes in N2 activation
and its versatile transformations. This work seeks to address
the current gaps and provide new insights into promising
applications of these special carbene species (Figure 1b).

■ COMPUTATIONAL METHODS
According to the literature, the M06-2X67 functional is highly reliable
for calculations involving organic systems.68 Therefore, all model
molecules were fully optimized and subjected to frequency
calculations using the Gaussian 16 (A.03) software package69 under
gas phase at the (U)M06-2X(D3)70/def2-SVP71 level of theory.
Additionally, the stability of wave functions for all optimized
structures and transition states was verified using the “stable = opt”
keyword. All optimized model molecules exhibited no imaginary
frequencies, while the transition states possessed exactly one
imaginary frequency. Furthermore, the accuracy of the two lower-
energy structures connected by each transition state was confirmed
using intrinsic reaction coordinate calculations.72,73 Single-point
energy calculations were performed using the (U)M06-2X(D3)/
def2-TZVP74,75 level. The Gibbs energy (ΔG) at 298.15 K was
calculated using the formula ΔG = Δ(E + GZPE), where GZPE
represents the Gibbs energy correction obtained from the (U)M06-

Figure 1. (a) N2 activation by transition metals, borylenes, and σ0π2 carbenes. (b) All carbenes with a σ0π2 electronic configuration intended for N2
activation.
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2X(D3)/def2-SVP method and the electronic energy E is derived
from single-point energy calculations at the (U)M06-2X(D3)/def2-
TZVP level. To further validate the reliability of the computational
methods, geometry optimizations were also conducted using the
higher-precision (U)M06-2X(D3)/def2-TZVP method for compar-
ison. The corresponding results were found to be almost identical to
those obtained at the (U)M06-2X(D3)/def2-TZVP//(U)M06-2X-
(D3)/def2-SVP level, thus confirming the consistency and reliability
of the chosen computational method. Density matrices of natural
atomic orbitals used for Wiberg bond indices (WBI),76 principal
interacting orbital (PIO),77,78 and natural population analysis (NPA)
were obtained using the NBO 7.0 program79 at the M06-2X(D3)/
def2-SVP level. PIO analyses were performed using the PIO software
available at https://github.com/jxzhangcc/PIO. Aromaticity indices,
including nucleus-independent chemical shifts (NICS)80 and
anisotropy of the current-induced density (ACID),81 were also
computed at the M06-2X-D3/def2-SVP level. Also, viewing of
optimized structures and rendering of various orbitals (FMO, PIO,
PIMO) were performed using the CYLview82 and the VMD,83

respectively. Interaction region indicator (IRI)84 analysis was
conducted using the Multiwfn85 program.

■ RESULTS AND DISCUSSION
Previous studies have shown that σ0π2-configured carbenes
may be more favorable for N2 activation. This could be
attributed to the σ-type lowest unoccupied molecular orbital
(LUMO) of σ0π2 carbenes, which can more readily accept
electrons from the 2p orbitals of N atoms in N2, while
simultaneously occupied 2pπ electrons on the carbene carbon
are donated back to the π* orbitals of N2 (Figure 1a).49 Figure
1b lists the nine model molecules used in this work. Research
by Borden, Hoffmann, and Wagner86 has indicated that these
molecules exhibit a σ0π2 electronic configuration, serving as
models to investigate whether all σ0π2-configured carbenes can
achieve N2 activation. As shown in Table 1, the thermody-
namics of reactions between these σ0π2 carbenes and N2 are
not uniformly favorable. Specifically, (a) for five-membered
(5MR) cyclic σ0π2 carbenes (NCN1, NCN2, and NCN3),
both the N2 fixation (coordination) and bis-carbene-complex-
ation processes exhibit negative Gibbs energy changes (ΔG),
indicating thermodynamically favorable reactions. (b) In the

Table 1. Gibbs Energies (ΔG1: The Gibbs Energy Changes of the N2 Fixation; ΔG2: The Gibbs Energy Changes of the Bis-
carbene Complexation. Both ΔG1 and ΔG2 Are Calculated Based on R. Unit: kcal/mol) for N2 Activation via σ0π2 Carbenes.
Comparison of Relative Electronic Energies (ΔEST = ETriplet − ESinglet, kcal/mol) for σ0π2 Carbenes in Different Spin States

entry NCN1 NCN2 NCN3 NCN4 NCN5 NCN6 NCN7 CCC1 CCC2

ΔEST +1.0 +1.4 +7.9 +19.5 +33.5 +41.0 +20.7 −9.0 +13.8
ΔG1 −15.3 −19.7 −12.3 −8.1 −6.8 −0.8 +10.5 −6.0 +20.7
ΔG2 −66.5 −61.0 −49.2 +36.7 +60.2 NA −1.5 +140.9 +169.1

Figure 2. Gibbs energy (kcal/mol) profiles for the dinitrogen activation by five-membered cyclic σ0π2 carbenes (NCN1, NCN2, and NCN3).
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case of six-membered (6MR) cyclic σ0π2 carbenes (NCN4,
NCN5, NCN6, NCN7), the first three carbene models
(NCN4, NCN5, NCN6) show negative ΔG values for N2
coordination but exhibit thermodynamically unfavorable
conditions for the bis-carbene-complexation process. Con-
versely, NCN7 behaves oppositely, where the formation of bis-
carbene products is exergonic. (c) Although coordination with
N2 stabilizes the acyclic σ0π2 carbene CCC1, the subsequent
bis-carbene functionalization remains endergonic. Moreover,
highly positive ΔG values indicate that both N2 coordination
and bis-carbene-complexation are thermodynamically unfavor-
able for CCC2. The calculation results of ΔEST indicate that
the ground states of carbenes with unique electronic
configurations, except for CCC1, are all singlet states.

It is well-known that a comprehensive evaluation consider-
ing both thermodynamic and kinetic feasibility serves as the
criterion for determining whether a reaction can be feasible.
Next, we systematically investigate the detailed kinetic
processes of the reactions between N2 and the three classes
of σ0π2-configured carbenes discussed above.
5MR σ0π2 Carbenes. As illustrated in Figure 2, the

coordination of 5MR-cyclic σ0π2 carbenes (NCN1, NCN2, and
NCN3) with N2 results in the formation of corresponding
carbene-N2 (η1-N2) adducts P1NCN1−3. Subsequently, the
terminal nitrogen atom continues to react with another
carbene molecule, forming thermodynamically more stable
dicarbene (μ-η:1η1-N2) products P2NCN1−3. Interestingly,
kinetic calculations indicate that these processes are barrierless,
supported by potential energy surface scan results (Figures S1
and S2). Inspired by previous research, we investigated the
hydroboration process of the η1-N2 adducts P1NCN1−3. Results
show that the unsubstituted σ0π2 carbene NCN1 undergoes
two steps, boron coordination (Figure S3) and 1,2-hydrogen
migration, to form the most thermodynamically (−60.7 kcal/
mol) and kinetically (ΔG⧧ = 13.0 kcal/mol) favorable product
P3NCN1. Notably, due to the higher thermodynamic stability of
P1NCN3 (−19.7 kcal/mol), its hydroboration exhibits a slightly
higher reaction barrier (ΔG⧧ = 27.3 kcal/mol), suggesting that
the corresponding transformation is not likely to occur at room
temperature.
6MR σ0π2 Carbenes. As shown in Figures S4 and 3, similar

to the 5MR-cyclic carbenes, the reactions begin with the

coordination of 6MR-cyclic σ0π2 carbenes (NCN4, NCN5,
NCN6, NCN7) with N2, forming the corresponding η1-N2
adducts P1NCN4−7. These intermediates then react further with
another carbene molecule to form μ-η:1η1-N2 products
P2NCN4−7. However, computational results presented in Figure
S4 indicate that for NCN4−NCN6, the formation of both bis-
carbene products and hydroboration products is thermody-
namically (+15.4 to +60.2 kcal/mol) and kinetically (61.7 to
81.4 kcal/mol) unfavorable. Surprisingly, the reaction of
NCN7 with N2 yields bis-carbene and hydroboration products
that are thermodynamically favorable, with ΔG values of −1.5
and −28.8 kcal/mol, respectively. Moreover, while the slightly
higher activation energies (ΔG⧧ = 25.2 kcal/mol and ΔG⧧ =
27.3 kcal/mol) present a challenge, there is potential for
modulation. As shown in Table S1, to further explore the
possibility of modulating the activation of N2 by NCN7, a
series of substituents (Me, Ph, C6F5, tBu, SiMe3, F, Cl, CN,
CF3, OMe, BMe2, NMe2, PMe2, and PMe3) were used to
replace the hydrogen on the boron atom of NCN7. The results
indicate that the ΔG (ΔG1 for N2 coordination and ΔG2 for
bis-carbene functionalization) ranges from −1.4 to +13.0 kcal/
mol and −44.0 to +54.2 kcal/mol, respectively. Notably, when
the hydrogen on the boron atom is replaced by π-electron-
donating groups (such as NMe2, OMe, F, Cl, PMe2, etc.), the
thermodynamic tendency for the new σ0π2 carbenes to react
with N2 improves significantly, with ΔG2 values ranging from
−44.0 to −14.8 kcal/mol. Especially when the substituent is
NMe2, the reaction exhibits the most favorable thermody-
namics (ΔG1 = −1.4 kcal/mol, ΔG2 = −44.0 kcal/mol), in
sharp contrast to an originally endergonic ΔG1. Further
aromaticity analysis reveals that slight destabilization of σ0π2

carbene NCN7R is a crucial factor in reversing the
thermodynamics of the reaction. Specifically, the NICS(1)ZZ
value of NCN7R becomes less negative from −29.7 ppm in
NCN7 to −20.2 ppm. Additionally, the ACID plots with
clockwise ring currents suggest aromaticity in both NCN7R
and NCN7 (Figures S5 and S6). Meanwhile, carbenes with
stronger bonds tend to exhibit higher deformation energies and
lower reactivity, as shown by the comparison of νC−N (NCN7,
373.6 cm−1) > νC−N (NCN7R, 362.7 cm−1).

Subsequently, a detailed kinetic analysis was conducted on
the thermodynamically optimal carbene NCN7R reacting with

Figure 3. Gibbs energy (kcal/mol) profiles for the dinitrogen activation by six-membered cyclic σ0π2 carbene NCN7.
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N2. As presented in Figure 4, compared to the parent NCN7,
the reaction barriers corresponding to the transition states for
both the N2 coordination step and the bis-carbene-complex-
ation step are reduced for carbene NCN7R by 4.0 kcal/mol
(ΔG1

⧧ = 12.1 kcal/mol) and 8.6 kcal/mol (ΔG2
⧧ = 16.6 kcal/

mol), respectively. This indicates that the bis-carbene
functionalization reaction of NCN7R with N2 is also kinetically
feasible. Furthermore, computational results indicate that the
hydroboration of N2 induced by NCN7R becomes both
thermodynamically and kinetically favorable. Specifically,
P1NCN7R coordinates with the Lewis acid HB {[IMe4B(H)-
Cb][B(C6F5)4], IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene,
Cb = o-carboran-1-yl)}87 to form a more thermodynamically
stable intermediate INT1NCN7R, with a ΔG of −14.5 kcal/mol,
which can be attributed to the formation of a “push−pull”88

electronic effect along the “carbene → N → BH” axis.
Subsequently, intermediate INT1NCN7R proceeds through
transition state TS3NCN7R, overcoming a reaction barrier of
13.7 kcal/mol to form hydroboration product P3NCN7R,
releasing 57.8 kcal/mol of energy. The reaction barrier for
this process is reduced by 13.6 kcal/mol compared to the
parent compound, highlighting the significant contribution of
the substituent on boron to the kinetics of the reaction.

Additionally, as shown in Figures S7 and S8, potential energy
surface scan results indicate that the coordination of HB is also
a barrierless process. Meanwhile, as shown in Figure S9, the
results from direct optimization calculations using the higher-
precision (U)M06-2X(D3)/def2-TZVP method further con-
firm the accuracy of the selected computational method.

The analysis of the geometric structures of key inter-
mediates, transition states, and products throughout the
reaction process indicates that the N−N bond length (dNN)
of the N2 fragment gradually elongates, the bond order
progressively decreases, and the vibration frequency (νNN)
steadily diminishes. These observations provide compelling
evidence for the feasibility of N2 activation by the σ0π2 carbene
NCN7R. Specifically, as illustrated in Figure 5, with the
formation of η1-N2-type product P1NCN7R from N2 and
NCN7R and subsequently μ-η:1η1-N2-type product P2NCN7R,
the changes in the N−N bond length are as follows: 1.093 Å →
1.117 Å → 1.289 Å (ΔdNN = 0.196 Å). Concurrently, the
vibration frequencies change from 2580 cm−1 to 2353 cm−1 to
1760 cm−1 (ΔνNN = 820 cm−1). Additionally, the Wiberg bond
index decreases from 3.029 to 1.278 (ΔWBINN = 1.751),
indicating a transformation of the N−N bond strength from a
triple-bond character to a delocalized single-bond character,

Figure 4. Gibbs energy (kcal/mol) profiles for the dinitrogen activation by σ0π2 carbene NCN7R.

Figure 5. Optimized geometries of transition states and key intermediates for the N2 activation by σ0π2 carbene NCN7R. Distances (black) are in
Å. Wiberg bond indexes (blue) and νNN (red) in cm−1 are shown in the geometries.
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consistent with the bond length and frequency analyses. Most
notably, the hydroboration of P1NCN7R can achieve N2
activation to an even greater extent. Specifically, the formation
of 1,1-hydroboration product P3NCN7R results in an elongation
of the N−N bond length by 0.262 Å, a decrease in the
vibration frequency by 1345 cm−1, and a reduction in the WBI
by 1.930. This outcome can be attributed to the “push−pull”
electronic effect formed by the introduction of HB, which
facilitates further N2 activation. As shown in Figure 6, the NPA

indicates that during the hydroboration process, the carbene
“pushes” electrons toward the N2 fragment (the NPA charge
change on the N2 unit is +0.039 → −0.358 → −0.962e), while
the HB “pulls” electrons toward the boron unit, with the NPA
charge on the boron atom changing from +0.373 to +0.529 to
+1.023e, suggesting a “Carbene → N2 → BH” push−pull
electronic effect. Compared to TS3NCN7 (−0.261e), the N2
fragment in TS3NCN7R receives more electrons (−0.358e),
indicating that more significant electron transfer is beneficial
for the kinetics of the 1,1-hydroboration of the η1-N2-type
product. This finding aligns with our previous findings.65

To gain a deeper understanding of the differences in
activation energies for N2 activation by σ2π0-configured
carbenes NCN7 and NCN7R, we conducted an energy
decomposition analysis (EDA)89 on the transition states
TS1NCN7 and TS1NCN7R (as shown in Table S2). The
computational results indicate that the higher deformation
energy of the carbene (ΔEdeform(carbene): +6.3 kcal/mol vs
+3.9 kcal/mol) is the primary reason for the destabilization of
TS1NCN7 compared to TS1NCN7R. Additionally, the slightly
lower binding energy between the deformed reactants (ΔEb:
−0.5 kcal/mol vs −1.3 kcal/mol) contributes to the greater
stability of TS1NCN7R. Moreover, the deformation energy of N2
(ΔEdeform(N2): +0.1 kcal/mol vs +0.1 kcal/mol) is negligible,

indicating that the N2 fragment undergoes virtually no
deformation. This observation is supported by the nearly
unchanged N�N bond length in the geometric structures.
Meanwhile, the analysis of TS2NCN7 and TS2NCN7R involved in
the bis-carbene functionalization process (as shown in Table
S3) indicates that introducing another carbene molecule
significantly contributes to the further stabilization of the η1-
N2 adducts, with binding energies of −50.5 and −46.6 kcal/
mol, respectively. However, the difference in deformation
energy of the carbene fragment within the η1-N2 adducts
[ΔEdeform(carbene′): +44.3 vs +26.2 kcal/mol] is the decisive
factor for the barrier differences between TS2NCN7 and
TS2NCN7R (25.2 vs 16.6 kcal/mol). In summary, the above
analyses suggest that the reaction barriers of the TSs during N2
fixation and bis-carbene functionalization processes are
primarily attributed to the deformation of the carbene. Further
geometric structure analysis (as illustrated in Figures 5 and
S10) shows that the total changes in important bond lengths
(∑ΔBL, as shown in Figure S11) corresponding to each step’s
transition state follow the order: TS1NCN7R < TS1NCN7 (0.093Å
< 0.138 Å) and TS2NCN7R < TS2NCN7 (0.450 Å < 0.542 Å).
Simultaneously, the extent of change in the ∠N−C−N angle
within NCN7R is always less than that observed in NCN7.
However, it is noteworthy that although the change in the
∠C−N−N angle in TS2NCN7R is significantly greater than that
in TS2NCN7 (30.9 > 5.2°), this structural distortion contributes
to the stabilization of the transition state to some extent.
Specifically, as shown in Figure 7, the real-space function IRI
analysis, which clearly reveals chemical bonds and weak
interactions, indicates significant van der Waals interactions
between the interacting fragments in TS2NCN7R. In contrast,
TS2NCN7 exhibits only slightly repulsive interactions. Similarly,
as indicated in Figure 8, the EDA results for the hydroboration
step show that the barrier differences between TS3NCN7 and
TS3NCN7R (27.3 vs 13.7 kcal/mol) are mainly attributed to the
binding energies between the N2-carbene adduct fragment and
the HB fragment (−51.9 vs −68.7 kcal/mol). Further analysis,
in Figure 8c,d, reveals that this difference originates from the
HOMO−LUMO gap between interacting fragments (1.76 vs
0.81 eV). Thus, a smaller HOMO−LUMO gap between
interacting fragments correlates with a more pronounced
binding energy.

The PIO analysis, which can identify and quantify the major
orbital interactions between two interacting fragments, clearly
reveals that the coordination between the occupied and
unoccupied p-orbitals of the carbene carbon atom is a critical
reason for σ2π0-configured carbenes achieving N2 activation. As

Figure 6. NPA of key intermediates (a), transition states (b), and
products (c) in the hydroboration process.

Figure 7. IRI analysis of TS2NCN7 (a) and TS2NCN7R (b) (isovalue = 1.0 au).
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Figure 8. EDA of the N2 hydroboration of transition states (TS3NCN7 and TS3NCN7R). (a) The general formula for EDA calculation and the
corresponding results (b). The electronic energies are given in kcal/mol. Frontier molecular orbitals for the fragments of TS3NCN7 (c) and
TS3NCN7R (d) (isovalue = 0.05).

Figure 9. PIO analysis of TS2NCN7 (a) and TS2NCN7R (b). The population (pop) of each PIO and the PIO-based bond index (PBI) and the
percentage contribution of each PIO pair are given here (isovalue = 0.05).
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shown in Figure S12, the first set of interactions between the
interacting fragments in TS1NCN7 involves p(N2) → vacant
p(C), while the second set of PIO pairs involves pπ(carbene
carbon) → π*(N2), with interaction strengths of PBI of 0.49
and 0.07, respectively. This indicates that electron transfer
from the N2 fragment to the σ-type sp2-empty orbital of the
carbene carbon is the primary interaction in the N2 fixation
step.49,50 In comparison, although the interactions between the
interacting fragments in TS1NCN7R are consistent with those of
the parent compound, the corresponding interaction strengths
of PBI are weakened, being 0.37 and 0.06, respectively.
Furthermore, as illustrated in Figure 9, comparing the PIO
analyses of TS2NCN7 and TS2NCN7R reveals that while the first
set of PIO pair interactions differs only slightly between the
two (PBI values of 0.43 and 0.36), the difference in the second
set of PIO pairs’ PBI is significant at 0.23 (0.04 vs 0.27).
Additionally, the electron occupancy numbers of the
interacting fragments indicate that the newly introduced
carbene fragment in TS2NCN7R contributes more significantly
through its 2pπ-orbitals, transferring more electrons to the
antibonding π*(N2) orbitals of the N2 fragment. This
increased the possibility that electron transfer into the
antibonding orbitals of N2 is key to N2 activation.

In addition to N2 activation, the σ2π0-configured carbene
CNC7R can also achieve a series of H-X (X = H, CH3, Bpin,
SiH2Ph) bond insertion reactions. Computational results
indicate that the activation processes of these H-X bonds are
both thermodynamically and kinetically favorable. As shown in
Figure 10, the order of transition state barriers for the insertion

of H-X bonds with CNC7R is as follows: H−CH3 (15.3 kcal/
mol) > H−H (11.3 kcal/mol) > H-Bpin (8.3 kcal/mol) > H-
SiH2Ph (8.2 kcal/mol). Further EDA calculation results (Table
S4) show that the higher activation energy for methane (H−
CH3) is mainly attributed to the greater deformation energy of
the reactants [ΔEdeform(carbene + H-X) = 13.2 kcal/mol],
while the lowest reaction barrier for H-SiH2Ph is primarily due
to the binding energy between deformed reactants (ΔEb: −6.5
kcal/mol) and π−π interactions between aromatic rings of
interacting fragments in the transition state (as illustrated in

Figure S13). Additionally, as shown in Figure S14, the PIO
analysis of the TSs for the activation processes indicates that
the primary interactions between CNC7R and small molecules
such as methane, hydrogen, HBpin, and SiH3Ph are σ(H-X) →
vacant p(C) and pπ(carbene carbon) → σ*(H-X). Moreover,
NCN7R is also highly sensitive to C−H bonds in some
common solvents (Figure S15), such as benzene, cyclohexane,
and tetrahydrofuran, highlighting the importance of selecting
the appropriate solvents for this type of reaction. Similar N2
activation pathways utilizing borylenes have been documented
to compare with the C−H bond activation, notably in the work
of Braunschweig et al.24,30b

Acyclic σ0π2 Carbenes. The computational results
presented in Table 1 indicate that although the noncyclic
σ0π2 carbene model molecule proposed by Wagner, CCC1,
does not yield a thermodynamically favorable product upon
bis-carbene-complexation with N2, the formation of the η1-N2-
type P1CCC1 is exothermic by 6.0 kcal/mol. Comparative
calculations show that the triplet electronic state of CCC1 has
an electronic energy 9.0 kcal/mol lower than that of the singlet
state. Consequently, we computed the kinetic processes for
both distinct electronic states. As illustrated in Figure S16, the
reaction barrier for the singlet state is lower than that for the
triplet state, being 20.6 and 37.9 kcal/mol, respectively. This
suggests that after the triplet ground-state CCC1 interacts with
N2 via noncovalent interactions, it transitions through the
minimum energy crossing point to the singlet state, over-
coming an activation energy of 20.6 kcal/mol to generate the
singlet-state N2 fixation product P1CCC1. It is similar to the
previous findings of Miliordos et al.49 In contrast, the
extremely high reaction barrier along the triplet-state pathway
is not kinetically favorable. To further explore the activation
and transformation of coordinated N2, the 1,1-hydroboration
reaction was computationally investigated. As indicated by the
blue path in Figure S16, introducing the HBa leads to its
coordination with P1CCC1, forming intermediate INT1CCC1a.
This is followed by a transition through TS2CCC1a (ΔG≠ = 99.5
kcal/mol) to form P2CCC1a, which is endergonic by 47.3 kcal/
mol, indicating that this process is both thermodynamically
and kinetically highly unfavorable. Subsequently, another
Lewis acid, HBb [HB(C6F5)2], was attempted, as shown by
the cyan path in Figure S16. Unfortunately, while HB(C6F5)2
can achieve further stabilization of the η1-N2-type product,
resulting in a thermodynamically stable intermediate
INT1CCC1b (ΔG = −11.4 kcal/mol), the reaction barrier that
spans TS2CCC1b (ΔG≠ = 29.2 kcal/mol) remains significant,
which makes the process challenging to achieve and would
require higher temperatures in experimental settings.

σ2π0 Carbenes. To further elucidate the strong potential of
σ0π2 carbenes in N2 activation, we compared their reactivity
with that of the commonly used cyclic (alkyl)(amino)carbene
(CAAC) toward N2. As shown in Figure S17, mechanistic
calculations indicate that while the process of assisting N2 bis-
carbene-functionalization by CAAC is thermodynamically
favorable, the exceedingly high reaction barriers (ΔGTS1

≠ =
44.1 kcal/mol and ΔGTS2

≠ = 52.2 kcal/mol) suggest that such
transformations are virtually unachievable under mild con-
ditions. Furthermore, as shown in Figures S12 and S18, the
PIO analysis uncovered that the interaction strength between
the sp2-lone-pair in σ2π0 carbenes (CAAC) and the π*
antibonding orbitals of N2 is significantly greater compared to
the backdonation of σ0π2 carbenes with N2 (0.64 vs 0.06).
Concurrently, the shorter C···N distances in the transition

Figure 10. Gibbs energy (kcal/mol) profiles for H−X (X = H, CH3,
Bpin, SiH2Ph) bond activation by σ0π2 carbene CNC7R.
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states further indicate stronger repulsion between the bonding
atoms (TS1NCN7R > TS1NCN7 > TS1CAAC:1.975 Å > 1.850 Å >
1.575 Å), which is consistent with our previous studies.60,90

Additionally, in Figure S19, frontier orbital analysis indicates
that the lower LUMO of the σ0π2 carbene may be a critical
reason for its greater propensity to interact with the highest
occupied molecular orbital of N2.

■ CONCLUSION
In summary, we systematically investigated the potential of
cyclic and acyclic σ0π2-configured carbenes in assisting the
hydroboration and bis-carbene functionalization of N2 using
density functional theory calculations. Among these species,
NCN7R (R = NMe2) is considered the most likely candidate
for experimental synthesis, as it exhibits optimal kinetic and
thermodynamic properties. The reaction barriers for both
processes are as low as 13.7 and 16.6 kcal/mol, respectively.
Detailed mechanistic studies reveal that σ0π2-configured
carbenes can effectively activate nitrogen by utilizing their
unoccupied and occupied p orbitals to achieve a synergistic
interaction of electron acceptance and electron donation.
Surprisingly, introducing a Lewis acid HB at the terminal
nitrogen atom of the η1-N2-type complex P1NCN7R creates a
“push−pull” electronic effect, further stabilizing it. Subsequent
1,1-hydroboration reactions exhibit superior thermodynamics
(−57.8 vs −44.0 kcal/mol) and kinetics (13.7 vs 16.6 kcal/
mol) compared to those of the bis-carbene-complexation
process of N2. Evidence of N2 activation includes elongated
N−N bonds (increased by 0.262 Å), reduced stretching
vibration frequencies (decreased by 1345 cm−1), and a
weakened WBI (1.930). Additionally, EDA analysis reveals
that the lower deformation energy of carbenes contributes to
the favorable kinetics of NCN7R in N2 activation. Moreover,
NCN7R can also facilitate a series of X−H insertion reactions
(X = H, CH3, Bpin, SiH2Ph), with activation energies as low as
8.2 to 15.3 kcal/mol. Our findings underscore the strong
potential of carbenes with a σ0π2 electronic configuration in N2
activation and its versatile transformations, providing valuable
insights into metal-free N2 activation chemistry.
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