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ABSTRACT: Tensor networks, such as matrix product states (MPS) and
tree tensor network states (TTNS), are powerful ansaẗze for simulating
quantum dynamics. While both ansaẗze are theoretically exact in the limit
of large bond dimensions, [J. Chem. Theory Comput. 2024, 20, 8767−
8781] reported a non-negligible discrepancy in its calculations for exciton
dissociation. To resolve this inconsistency, we conduct a systematic
comparison using Renormalizer, a unified software framework for MPS
and TTNS. By revisiting the benchmark P3HT:PCBM heterojunction
model, we show that the observed discrepancies arise primarily from
insufficient bond dimensions. By increasing bond dimensions, we reduce
the relative difference in occupancy for weakly populated electronic states
from up to 60% toward the end of the simulation to less than 10% and the
absolute difference from 0.05 to 0.005. We also discuss the impact of
tensor network structures on accuracy and efficiency, with the difference
further reduced by an optimized TTNS structure. Our results confirm that both methods converge to numerically exact solutions
when bond dimensions are adequately scaled. This work not only validates the reliability of both methods but also provides high-
accuracy benchmark data for future developments in quantum dynamics simulations.

1. INTRODUCTION
Tensor networks have emerged as powerful tools for
simulating quantum dynamics. These networks approximate
high-order wave function tensors as contractions of lower-
order tensors, enabling accurate simulations of complex
systems.1−3 The accuracy of this approximation is controlled
by the size of the low-order tensors, also known as the bond
dimension. In the limit of large bond dimensions, tensor
network methods converge to the exact solution. Among
tensor network methods, matrix product states (MPS) are the
foundation of the time-dependent density matrix renormaliza-
tion group (TD-DMRG).4−10 TD-DMRG has been success-
fully applied to study systems such as charge transport in
organic semiconductors,11 nonradiative decay in molecular
aggregates,12 and photoinduced ultrafast vibration-coupled
electron transfer reactions,13 among others.14−20 Meanwhile,
tree tensor network states (TTNS) form the basis of the
multilayer multiconfiguration time-dependent Hartree method
(ML-MCTDH),21,22 which has found widespread applica-
tions23−29 such as the study of singlet fission30 and exciton
migration.31−36

While TD-DMRG and ML-MCTDH originated in different
research communities,37−45 it is now well-established that both
rely on tensor networks and share fundamental similarities.3

Recent efforts have focused on directly comparing these
methods to understand how their different tensor network

structures affect simulation accuracy and efficiency.3,6,46−49 In
principle, both methods should converge to the exact result
when the bond dimension is sufficiently large. It is often
assumed that TTNS converges faster than MPS with respect to
the bond dimension, while MPS offers a better computational
scaling in terms of the bond dimension, due to its simpler
tensor structure.

However, an intriguing discrepancy emerged in a recent
benchmark study.50 The authors performed an extensive and
careful comparison of the two methods with standard
implementations, and found that both methods agreed
perfectly in most scenarios. Their analysis also connected the
observed dynamics with patterns of entanglement entropy and
the underlying tensor network structures. For exciton
dissociation at poly(3-hexylthiophene):[6,6]-phenyl-
C61−butyric acid methyl ester (P3HT:PCBM) heterojunctions,
TD-DMRG and ML-MCTDH showed small but non-
negligible differences at the long time limit. This inconsistency
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is troubling because both methods are frequently used as
reference standards for validating and benchmarking other
quantum dynamics approaches.51−54 The comparison is
complicated by the use of different software implementa-
tions,55,56 making it challenging to isolate the origin of these
differences. Very recently, Lindoy and Rungger and co-workers
systematically investigated this system using both multiset and
singleset MPS/TTNS ansaẗze based on the pyTTN package.57

They demonstrated that the multiset ansaẗze yields highly
accurate and consistent results, while the singleset ansaẗze
exhibits slow bond dimension convergence. Their analysis
suggests that insufficient bond dimension is the most likely
source of the discrepancy reported in the benchmark study.50

In this work, we revisit the P3HT-PCBM model using the
Renormalizer package, which provides a unified framework for
both MPS and TTNS.48,58 Through extensive benchmark
using the projector splitting (PS) algorithm based on the Time
Dependent Variational Principle (TDVP),7−10,59−61 we
conclusively confirm that the observed discrepancies stem
from insufficient bond dimensions. In this context, TDVP-PS
with MPS corresponds to TD-DMRG, while TDVP-PS with
TTNS corresponds to a variant of ML-MCTDH known as
Projector Splitting Integrator ML-MCTDH (PSI-ML-
MCTDH). Additionally, guided by the entanglement entropy
calculated from TTNS simulations, we propose two new
structures for MPS and TTNS, respectively, tailored for this
exciton dissociation model. We find that the new TTNS
structure is more efficient than the previous MPS and TTNS
structures, while the new MPS structure results in higher error.
Our results demonstrate that both methods can achieve
numerically exact results, reinforcing their reliability for the
simulation of complex quantum dynamics.

2. METHODOLOGY
2.1. The Exciton Dissociation Model. In this section, we

present the model for the numerical comparison of MPS and
TTNS. The model describes the exciton dissociation at the
interface of fullerene molecules and a linear chain of No = 13
oligothiophene (OT) molecules, which is originally introduced
in the reference paper.50,62,63 The model can be considered as
a simplified representation of the P3HT:PCBM heterojunc-
tion.64 The reference paper provides a detailed chemical
picture of the model. In Figure 1, we present an interaction-
based view of the model.

As shown in Figure 1, each OT molecule is associated with
two electronic states: a local excitation (LE) state and a charge-
separated (CS) state. The CS state describes the interaction
between the OT molecule and the fullerene cluster. The LE
and CS states can hop to their nearest neighbors. Additionally,
the LE and CS states at the first OT molecule (LE1 and CS1)
can transit between each other. The system starts in the LE1
state due to initial excitation. Besides, there are three types of
vibrations in the model, which are shown as filled spheres in
Figure 1. Each OT molecule has 8 local vibrational modes, and
they are coupled to both its LE state and the CS state. The
fullerene cluster has 8 vibrational modes, denoted as F, which
couple to all CS states. There is an additional intermolecular
vibrational mode, denoted as R, which specifically couples to
the transition between LE1 and CS1.

The Hamiltonian of the system Ĥ can be decomposed into
three parts

= + +H H H He vib e vib (1)

Here, Ĥe represents the electronic energy and interactions, Ĥvib

represents the vibration energy, and Ĥe‑vib represents the
electron−phonon interaction or the vibronic coupling. We
next describe each term in detail.

The electronic Hamiltonian Ĥe is further split into diagonal
and off-diagonal terms

= +H H He
diag
e

off diag
e

(2)

The diagonal part consists of on-site energies for the LE and
CS states:

= | | + | |H LE LE CS CS
n

N

n n
n

N

n n ndiag
e LE CS

o o

(3)

The off-diagonal terms include hopping interactions between
neighboring LE and CS states:

= | | + | | +

| | +

+ +H J tLE LE CS CS

LE CS H. C.

n

N

n n
n

N

n noff diag
e

1

1

1

1

1 1

o o

(4)

where “H.C.” represents Hermitian conjugation. Following the
reference work, the parameters used in this model are ϵLE =
100 meV, J = 100 meV, t = −120 meV and λ = −200 meV.
The values for ϵnCS are listed in Table A1.

The vibrational Hamiltonian Ĥvib includes three types of
vibrations: an intermolecular mode R, Nf fullerene modes F
and No × Nm local OT vibrational modes. When there is no
ambiguity, we refer to the local OT vibrations simply as “OT”.
Ĥvib is then written as

= +

+

† †

†

H b b b b

b b

R R R
l

N

F l F l F l

n

N

l

N

l nl nl

vib
, , ,

OT, OT, OT,

f

o m

(5)

Here, Nf = Nm = 8, ωR = 10 meV, and the frequencies ωF,l and
ωOT,l are listed in Table A2 in Appendix A.
Ĥe‑vib assumes linear vibronic coupling and can be

decomposed to three groups, corresponding to three different
types of vibrations:

Figure 1. Exciton dissociation model employed in this work. Each OT
molecule is associated with a LE and a CS state. The system consists
of 13 OT molecules in total. Orange arrows indicate electronic state
transitions, while the purple, green, and light blue spheres represent
different types of vibrational modes coupled to the LE and CS states.
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= + +H H H HR F
e vib e vib e vib

OT
e vib

(6)

The intermolecular R mode has both diagonal and off-diagonal
couplings to the LE1 state and CT1 state

= + | |

+ + | | +

†

†

( )
( )

H g b b

g b b

CS CS

( LE CS H. C. )

R R R R

R R R

e vib
1 1

1 1 (7)

where =g 10/ 2R meV and =g 30/ 2R meV. The
fullerene modes F couple to the on-site energy of the CS states

i

k
jjjjjj

y

{
zzzzzz= + | |†

H g b b CS CSF
n

N

l

N

F l F l F l n n
e vib

, , ,

o f

(8)

where the coupling constants gF,l are included in Table A2. The
OT modes couple to the on-site energy of both the LE and CS
states
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(9)

The coupling constants gOT,l and gOT,l′ are included in Table
A2. These coupling constants, including F and OT vibrations,
are assumed to be independent of n, the index of the OT
molecule.

Overall, the exciton dissociation model consists of 26
electronic states and 1 + 8 + 8 × 13 = 113 vibrational modes.
While most of the interactions are short ranged, ĤF

e‑vib

introduces long-range interactions between fullerene and OT
molecules.

2.2. MPS and TTNS. In this section, we briefly introduce
the principles of MPS and TTNS, using the tensor network
language and with an emphasis on the relationship between
their accuracy and the entanglement entropy. For more
detailed explanations, readers are encouraged to consult
several excellent reviews and introductory literatures.3,4,6,65−68

MPS and TTNS are data structures that approximate high-
order tensors by the contraction of low-order tensors. Let us
consider a quantum system with N degrees of freedom. For
each degree of freedom, the corresponding primitive basis is
denoted by |σi⟩. The wave function of the system can be
approximated by MPS and TTNS as

| = [ ] [ ] ··· [ ] | ···
{ } { }

A A A N1 2
a

a a a N
,

, , , 1 2N N
N

1 1
1

2 2
2

(10)

Here A[i] represents the low-order tensors. Λi is a set of
indices that connects to child nodes and ai connects to the
parent node. If Λi is an empty set, then A[i] represents a leaf
node. The contraction between the tensors occur according to
the index Λi. While TTNS employs a general tree-like
contraction topology, MPS utilizes a linear chain structure,
making MPS a special case of TTNS where all tensors are
arranged in one dimension. eq 10 represents a general TTNS
and it reduces to a MPS if Λi = {ai−1}.

Since tensor contraction operation is undirected, the
concept of parent and children nodes in TTNS is arbitrary.
In other words, we are free to choose the root of the tree for

implementation or formal purposes and it does not affect the
contraction result in eq 10. If a specific tensor is chosen as the
root, we denote it as A[r], where the index ar is not included in
any Λi and the dimension of ar is 1. As a result, the index ar is
omitted in the following when no ambiguity arises.

In ML-MCTDH or three-legged tree tensor network,46 there
are entirely “virtual” nodes, which are not associated with any
physical degree of freedom σ. For these virtual nodes, an
auxiliary physical degree of freedom with a Hilbert space of
dimension 1 can be assigned to ensure consistency with eq 10.
Similarly, there are also nodes where the number of physical
degree of freedom is greater than 1 and they can be combined
so that formally only one physical degree of freedom presents,
which is also known as the mode combination technique. For
simplicity, we assume that at the root node the dimension of σr
is 1 and thus σr can be ignored. If |σr| ≠ 1, we can decompose
A[r]Λ dr

σr into two tensors. One that has the indices Λr acts as
the new root, and the other whose shape is |σr|×|σr| acts as a
child to the new root. An auxiliary physical degree of freedom
can then be assigned to the new root and |σr| becomes 1. In
this work |σ| or |a| represent the dimension of the index.

Through sequential QR or singular value decomposition, the
tensor network in eq 10 can be transformed into a “canonical”
format. A tensor A[i] is said to be canonical if it satisfies the
following condition:

[ ] [ ] =†A i A ia a a a
,

, ,
i i

i i
i

i i
i

i i
(11)

Eq 10 is considered canonical if all tensors A[i], except for the
root A[r], are canonical. The root node is thus also referred to
as the canonical center. Importantly, the canonical center can
be moved to any node in the tree, analogous to how any node
can serve as the root. In the canonical form, the wave function
|Ψ⟩ can be expressed as

| = [ ] | [ ]
{ }

A r a j
j a

a
;r

r

j r

j

(12)

where A[r] acts as the coefficient tensor, and {|a[j]⟩} forms an
orthogonal basis set. Here each |a[j]⟩ is the orthogonal basis
set by one of the children

| [ ] = [ ] | | [ ]
{ }

a j A j a ka a j
k a

a
,

,
;

j

j j

j j

j

k j

k

(13)

The orthogonal relation ⟨a[j]adj′|a[j]adj
⟩ = δadj′adj

can be derived
from the canonical condition eq 11 through tree recursion.

The accuracy of the tensor network approximation is
controlled by the dimension of the indices {a}. In MPS and
general tensor network literature, this quantity is typically
referred to as the bond dimension. In the context of ML-
MCTDH, the same quantity is called the number of single-
particle functions. In this work, we employ the term “bond
dimension” following our previous conventions and use M to
denote this quantity.

In principle, the bond dimension can vary for each bond in
the tree, and it can be adjusted dynamically during time
evolution. In this work, we employ the same fixed bond
dimension for every bond, primarily to simplify the setup.
Since the initial state of the model introduced in Section 2.1 is
a product state, Krylov subspace vectors Ĥn|Ψ⟩ are added to
the product state with small coefficients to expand the bond
dimension to the target value M. Specifically, we typically add
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around 10 such vectors, included together with a small weight
of 10−10, to ensure minimal perturbation while effectively
expanding the state space. This enrichment is performed only
once during the initial state preparation and is not repeated
during the time evolution. We note that here the Krylov vector
refers to the global wave function, and should not be confused
with the Krylov vector method employed for solving the matrix
exponential of the time evolution discussed at the end of
Section 2.3.

The error introduced by the finite bond dimension can be
quantified by the singular values of A[r]. The square of the
singular values corresponds to the natural orbital population in
MCTDH language. Suppose aj ∈Λr and the other indices of
the root node are denoted as Λr′ = Λr \{aj}, we can reshape
A[r]Λ dr

to a two-dimensional tensor, where the first and the
second indices correspond to Λr′ and aj respectively. By
performing singular value decomposition on A[r]Λ dr′,a dj

, we
obtain the singular values sl. Let M′ be a integer smaller than
|aj|. By keeping only the first (largest) M′ singular values, the
dimension of aj is compressed to M′

[ ] =
| |

A r U s V U s Va
l

a

l l la
l

M

l l la,
SVD

r j

j

r j r j
(14)

Let |Ψ′⟩ be the wave function after compression. Since U and
V are unitary matrices and the bases in eq 11 are orthogonal,
the compression fidelity is |⟨Ψ′|Ψ⟩|2 = ∑ l

M′sl2. Assuming the
wave function is normalized, ∑ l

|aj|sl2 = 1. The compression
error is the sum of the square of discarded singular values

=
= +

| |

s1
l M

a

l
2

1

2
j

(15)

Thus, the ideal wave function for tensor network approx-
imation are those whose singular values decay rapidly.

The efficiency of the tensor network compression is closely
related to the bipartite von Neumann entanglement entropy S.
In a tree tensor network, cutting an arbitrary bond (edge) ak
divides the system degrees of freedom into two parts X and Y.
The bipartite von Neumann entanglement entropy S is defined
as

= { } = { }S Tr ln Tr lnX X Y Y (16)

where ρX and ρY are the reduced density matrix of X and Y,
respectively.

In general, S is difficult to calculate for many-body systems,
because calculating S involves diagonalizing the reduced
density matrices to obtain the eigenvalues. However, the
canonical form of tensor networks, as described in eq 12,
provides an efficient way to calculate S. To do so, the canonical
center is first moved to the bond ak that divides the subsystems
such that ak ∈Λr. The remaining indices are denoted as Λr′ =
Λr \{ak}. Supposing X is in the subtree of the bond ak, its
reduced density matrix ρX is then

= | | = [ ] [ ] | [ ] [ ] |†A r A r a k a kTrX Y
a a

a a a a
, ,

, ,

r k k

r k r k k k

(17)

By performing SVD on A[r] as described earlier in eq 14, the
entanglement entropy can be calculated by the singular values

=S s sln
l

l l
2 2

(18)

Note that SVD can also be employed to move the canonical
center to the neighboring nodes. Thus, by sweep the canonical
center across the tree, we can obtain the entanglement entropy
S for each bond.

As indicated by eq 18, if the bond ak has bond dimension M,
the maximum possible entanglement entropy S is lnM, which
occurs when =s M1/l . In other words, for a bipartite system
with entanglement entropy S, the bond dimension must exceed
eS in order to accurately describe the system. As a special case,
if S = 0, then sl = δl,0, and the required bond dimension is 1.
Thus, for systems exhibiting strong entanglement, a large bond
dimension is required to achieve an accurate simulation. The
choice of tensor network structure, particularly the MPS
ordering or more generally the TTNS tree structure, affects the
bipartition of the system and consequently the entanglement
entropy. Structures that minimize bipartite entanglement
entropy are preferred, as they allow for more efficient
simulations. Finding the globally optimal structure for a
given Hamiltonian is believed to be a challenging problem. In
practice, tensor network structures are often designed based on
heuristics or the nature of the system’s interactions.

2.3. Tensor Network Structures. In this study, we
explore four different tensor network structures, which are
illustrated in Figure 2. The first is a standard MPS, shown in

Figure 2a, which takes a linear form. The first site of the MPS
contains all electronic states, including 13 LE states and 13 CS
states. This is followed by the R site, and then 8 F vibration
sites. Finally, the local OT vibrations are appended molecule
by molecule. The site ordering of the MPS is the same as the
site ordering in the reference work.50

Figure 2. Tensor network topologies used in this work: (a) A MPS
linear chain structure following the reference work; (b) A TTNS
structure following the reference work; (c) and (d) are additional
MPS and TTNS structure proposed in this work. The four structures
are denoted as “Chain”, “Tree”, “ChainX” and “TreeX” respectively.
The physical indices are ommited. The colors indicate different types
of degrees of freedom.
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The second structure is a tree tensor network based on the
reference work. As shown in Figure 2b, the root node has 3
children. The first child contains all 8 F modes and the R
mode. The second child contains the 26 different electronic
states. The third child contains all local OT vibrational modes.
The OT vibrational modes are divided into two subtrees based
on the vibration frequency: low frequency modes and high
frequency modes. High frequency modes are defined as the
modes whose ωOT,l > 300 meV. According to Table A2, there
are two high frequency modes per OT molecule. The topology
of this tree is identical to the one used in the reference work. In
the tree structure, a few nodes that are close to the leaves in the
OT subtree have three children. Since in this work we use fixed
uniform bond dimension across the whole tree, such ternary
nodes become too large and lead to an unnecessary
computational bottleneck. To address this, we reduce the
bond dimension associated with these nodes and their children
to 1

8
of the bond dimension of the entire tree. Since these

nodes are close to the leaves, this reduction in bond dimension
has minimal impact on accuracy. The bond dimension is the
only difference between Tree and the TTNS structure
employed in the reference work. We also note that although
the root node in Figure 2b,d has three children, it is not the
bottleneck of the computation. This is because as the root of
the tree, the total number of virtual indices it carries is three,
which is comparable to other nodes that have two children and
one parent. Therefore, a root node with three children ensures
balanced computational cost over all nodes in the tree.

Next, we describe the tensor network structures proposed in
this work, which are designed based on the calculation result
from the Tree structure. The third structure, shown in Figure
2c, is another MPS with different configuration compared to
Figure 2a. For clarity, in this paper, we use “Chain” and
“ChainX” to denote the MPS configurations shown in Figure
2a,c, respectively. In ChainX, the LE state, CS state and the
vibrations of each OT molecule are first grouped together.
Then, the OT1 unit is placed at the center of the chain, with
OT units of even indices on the left side and OT units of odd
indices on the right side. The R mode is placed next to the
OT1 unit and the F modes are positioned at the beginning of
the chain. The structure is designed so that the degrees of
freedom with the strongest entanglement entropy are placed in
the center of the chain.

The last structure is a tree tensor network, shown in Figure
2d. We use “Tree” and “TreeX” to denote the tree structures
shown in Figure 2b,d, respectively. In “TreeX”, the electronic
states and vibration states for each OT molecule are first
grouped to form a subtree. The subtree is exemplified by the
OT2 subtree shown in Figure 2c. The corresponding electronic
node for OT2 contains three bases: the vacuum state, the LE2
state, and the CS2 state. Quantum number constraints are
applied to restrict the wave function to the single-exciton
manifold. For discussions on grouping versus distributing
electronic states in tensor networks within the MPS context,
we refer readers to existing literature.18,69 The overall tree is
then constructed based on the 13 subtrees. The root node of
the TreeX structure has 3 children. The first child contains
OT1 and OT2 subtree, as well as the R vibration. The second
child contains the OT subtrees 3−6. The third child contains
the rest of the subtrees, as well as the F vibrations. TreeX is
designed to minimize the entanglement entropy at the top
layer of the tree.

For all tensor structures, the harmonic oscillator eigenbasis is
employed for the primitive basis of the vibrations, unless
otherwise stated. Following the reference work,50 the number
of the oscillator states for a given vibrational mode is set to (g/
ω)2 + 3g/ω + Nb, where g is the maximum coupling constant
across all types of couplings, and Nb is an adjustable offset. In
this work we employ Nb = 18, which according to the reference
paper should be enough for converged result.50 In Appendix C,
we show that using the discrete variable representation (DVR)
basis does not significantly affect the calculated dynamics.

The multiset formulation employs multiple, independent
tensor network states, which are then linearly combined to
represent the total wave function.70,71 This approach has
demonstrated good performance for the exciton dissociation
model studied in this work.57 The multiset wave function
allows different electronic states to couple with entirely
different nuclear wave functions, which reduces the bond
dimension for each individual tensor network state. In this
work, we focus on singleset tensor network states where all
electronic and vibrational states are encoded in one tensor
network. However, we are actively developing a multiset
implementation, and a systematic benchmark comparing
multiset and singleset tensor network states will be the focus
of our future research.

Another important aspect of MPS and TTNS algorithm is
the corresponding operators, namely matrix product operators
(MPO) and tree tensor network operators (TTNO).4,67,72

Similar to MPS and TTNS, MPO and TTNO are tensor
network representations of quantum operators. Within ML-
MCTDH, the Multi-Layer operators introduced by ML-Potfit
are closely related to TTNOs.73 ML-Potfit itself is a
generalization of the Potfit algorithm,74 adapted for the
multilayer framework. Its primary function is to numerically
construct the potential energy operator by fitting a continuous
analytical potential energy surface into the required ML
operator form. In this work, MPO and TTNO are constructed
exactly given the sum-of-product form of the operator. This
distinguishes our approach from standard ML-MCTDH,
where the direct sum-of-product form is generally used for
model systems. In our previous work, we demonstrated that
employing MPO provides a computational scaling advantage
over the sum-of-product approach.6 We utilize the automatic
MPO/TTNO construction algorithm based on bipartite graph
theory,48,75 which efficiently generates the most compact
MPO/TTNO with negligible computational cost. Here, “most
compact” means the exact MPO and TTNO with minimal
bond dimension, which will directly affect the computational
cost. The maximum MPO/TTNO bond dimension for Chain,
Tree, ChainX and TreeX are 29, 29, 29, 14, respectively. For
comparison, the corresponding Hamiltonian operator contains
503 terms in the sum-of-product form. For both Chain and
Tree structures, the maximum MPO/TTNO bond dimension
is associated with the electronic node, because all 26 electronic
states are represented in a single leaf node. The 29 operaters
include 26 diagonal operators for each electronic state, one
identity operator to be coupled with Ĥvib, one electronic
Hamiltonian operator Ĥe to be coupled with the identity
operator of the vibrations, and one off-diagonal operator
|LE1⟩⟨CS1| + H.C. to be coupled with the R mode. In TreeX,
the maximum bond dimension is reduced to 14 because the
diagonal electronic operators are coupled with the vibrations
and merged with Ĥe in the subtrees. This is not possible in
ChainX, where all diagonal electronic operators must
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individually couple with the F mode placed at the boundary of
the chain. For more details of MPO/TTNO construction, we
refer readers to our prior works, where we provide the specific
matrix elements of MPO and TTNO for several typical
models.16,48

The time evolution of MPS/TTNS is carried out using the
TDVP-PS algorithm, which represents another key difference
between our approach and standard ML-MCTDH. The
TDVP-PS algorithm for TTNS (PSI-ML-MCTDH) and its
variants have been known for over a decade,9,59,60,76 however,
the variable mean-field (VMF) method remains predominant
for time integration in the ML-MCTDH community. The
VMF method is also employed in the reference work. The PS
algorithm features a sequential sweep over the tensor network
to perform the time evolution, while VMF updates all nodes in
the tensor network synchronously. We shall discuss the
difference between the TDVP-PS and the VMF in Appendix
C. In this work, unless otherwise stated, the 1-site TDVP-PS
algorithm is employed. The product between a matrix
exponential and a vector is solved by the Krylov solver, or
more specifically the short iterative Lanczos algorithm for the

Hermitian system studied here. For all results reported, the
time evolution step is set to 1 fs. During initial benchmarks, we
found that TDVP-PS supports a much longer time step than 1
fs, yet for the purposes of this paper, we choose 1 fs as the time
step for denser data points. Benchmark data for the time step is
provided in Appendix B.

3. RESULTS AND DISCUSSION

We first compare the dynamics of ⟨n̂LEd1
⟩ by Chain and Tree,

calculated by RENORMALIZER, in Figure 3. The employed bond
dimensions M for Chain and Tree are 512 and 256,
respectively. The full dynamics in Figure 3a agrees with the
reference paper,50 which describes the depopulation of the LE
state to other LE and CS states. Moreover, the difference
between the Chain and Tree results is almost negligible. In
Figure 3b we zoom in on region marked by the rectangle in
Figure 3a for a clear visualization of the difference at the long
time limit. From Figure 3b, we estimate that the difference
between the Chain and Tree results is at the order of 0.005. In
Figure 3c, we illustrate the relative difference of ⟨n̂LEd1

⟩, using

Figure 3. Difference in the ⟨n̂LEd1
⟩ dynamics calculated by Chain and Tree. (a) The full dynamics from 0 to 200 fs. (b) The dynamics at the long

time limit, i.e., from 150 to 200 fs. (c) The relative difference between the ⟨n̂LEd1
⟩ values, using Tree values as the reference.

Figure 4. Convergence of LE1 state occupation with bond dimension. The occupation is plotted against inversed bond dimensions 1/M at (a) t =
60 fs, (b) t = 90 fs, (c) t = 160 fs and (d) t = 190 fs. The expected values at 1/M = 0 are obtained from linear fits to the two smallest 1/M data
points.
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the Tree results as the reference. In general, the relative
difference increases over time, and the maximum difference is
approximately 8%. We note that the same MPS ordering and
TTNS structure as in the reference work are employed to
produce Figure 3. Overall, Figure 3 shows that Chain and Tree
produce consistent dynamics, with the differences being
negligible for most practical purposes.

We then provide further evidence that in our calculation
Chain and Tree are converging to the exact limit. In Figure 4
we show how ⟨n̂LEd1

⟩ evolves when M →∞. More specifically,
we choose t = 60, 90, 160, and 190 fs as several representative
time frames, and plot ⟨n̂LEd1

⟩ against 1/M. For reference, we
include the full dynamics calculated with different M in Figure
B1 in Appendix B. In Figure 4, we observe that as M increases
and 1/M decreases, the results from Chain and Tree converge.
We then estimate the value of ⟨n̂LEd1

⟩ in the 1/M → 0 limit by
linear extrapolation. The technique is inspired by the
extrapolation scheme employed in large scale static DMRG
calculations.77−79 To exclude the noise induced by the
calculations with small M, we employ only the two data points
with the smallest 1/M for the extrapolation. Figure 4 shows
that this simple extrapolation scheme reduces the difference by
Chain and Tree when t = 160 and 190 fs. We note that such
extrapolation is only valid when the bond dimension is
sufficiently large. Figure 4 shows that the dependence of ⟨n̂LEd1

⟩
on 1/M is highly nonlinear. As a result, extrapolation using the
data point with M < 100 (for Tree) or even M < 200 (for
Chain) will likely result in even larger errors compared to the
raw data. This behavior is fundamentally different from static
DMRG calculations. There, the energy is directly minimized,
resulting in a monotonic relationship with 1/M that enables
reliable extrapolation. Empirically, we found that the
extrapolation improves the consistency of results across
different tensor network structures particularly at the long
time limit. Therefore, we consider the extrapolated results to
be more reliable at the long time limit. However, in other
computational tasks where such extensive benchmarks are
unavailable, the extrapolation should be applied with caution.

Having confirmed that the dynamics in Figure 3 is
numerically exact, we investigate the origin of the discrepancy
reported in the reference work. Following the prescription
described in the reference paper, we reproduced these results
using RENORMALIZER, which are shown in Figure C1 in
Appendix C. We find that the bond dimensions of both
Chain and Tree are the key to the difference. On the one hand,
the bond dimension of Chain is expanded using 2-site TDVP-
PS with singular value truncation, and the bond dimension
becomes fixed after the maximum bond dimension reaches a
target value. While effective for short-time dynamics, this
method creates a bond dimension distribution biased toward
early time entanglement. This becomes the source of the error
for the studied model in which the entanglement spreads from
the OT1 molecule to other molecules over time. In our
approach for the results in Figure 3, a fixed uniform bond
dimension across the whole MPS chain is employed, avoiding
the problem. On the other hand, in the reference work, the
maximum bond dimension of the Tree calculation is M = 40.
However, our convergence analysis in Figure 4 shows that
further increasing M can enhance the long-time accuracy. As a
result, both the Chain and Tree results deviate from the exact
solution by a small yet non-negligible margin. Further details
are provided in Appendix C. We note that despite the relatively

small bond dimension employed in the reference work, the
short-time dynamics agree nearly perfectly. Additionally, the
maximum absolute difference in electronic state occupancy at
the long-time limit is only 0.05, which is often sufficient for
many practical applications.

The residual difference between Chain and Tree structures
with large bond dimension motivated the development of
optimized tensor network structures. For MPS and TTNS, the
new structures are termed ChainX and TreeX, respectively,
and are shown in Figure 2c,d. ChainX and TreeX are designed
based on the entanglement analysis of Tree calculations, shown
in Figure 5. The bonds with the largest entanglement entropy

are shown as they are the bottleneck of the computation.
Figure 5 reveals that the low frequency OT modes exhibit
significantly stronger entanglement compared to the F/R
vibrations, the electronic states, and the high frequency modes.
High-frequency modes show negligible entanglement, allowing
flexible placement in the network without affecting the
calculated dynamics. Furthermore, the low frequency modes
associated with the smallest OT index have the strongest
entanglement. Guided by these observations, TreeX groups
OT 1−2, OT 3−6 and OT 7−13 as the top subtrees, to
distribute the entanglement evenly. ChainX is inspired by
TreeX, where the OT 1 unit with the strongest entanglement is
placed in the middle of the chain. We note that although our
numerical experiments confirm that TreeX reduces errors
compared to other tensor network structures, it is unlikely the
optimal tree structure for this model and further structural
optimization could lead to additional enhancements.47,80

Our ChainX/TreeX calculations, performed with bond
dimensions up to M = 512 and M = 256 respectively and
combined with the extrapolation scheme from Figure 4, are
shown in Figure 6a. Chain, Tree, ChainX and TreeX results
demonstrate exceptional agreement. The corresponding
maximum absolute difference is estimated to be approximately
0.002, with an average error of approximately 0.001. Such
precision is remarkable for the complex quantum system and
highlights the reliability of numerically exact tensor network
methods. The complete set of extrapolated results for all 26
electronic states is provided in Appendix D, and all source data
are available in our repository.81 We believe the data will serve
as accurate benchmark data for the further development of
quantum dynamics algorithms.

In Figure 6b we show that TreeX shows the fastest
convergence compared to Chain, Tree and ChainX structures.
Using the extrapolated values from Figure 6a as reference, we

Figure 5. Von Neumann entanglement entropy distribution of Tree
when t = 200 fs.
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quantify the error as the time-averaged absolute deviation
between t = 150 and 200 fs:

= = n t n t
Error

( ) ( )

200 150
t 150
200

ref

(19)

Here n represents the occupation of the LE1 state. The reason
for choosing the 150−200 fs window is 2-fold. The first is that
the error in this time window dominates the total error. The
second is that throughout the manuscript we often focus on
the dynamics in this time range for detailed analysis. Our
analysis reveals that TreeX achieves comparable accuracy at M
= 32 to what Chain attains at M = 128. And when M = 128 the
average error of TreeX is already as small as 0.002, approaching
the uncertainty limit of our reference values. This enhanced
performance is consistent with the convergence trends shown
in Figure B1, and demonstrates that the optimized tree
structure more effectively captures the entanglement pattern of
the system. Meanwhile, ChainX exhibits the largest error
compared with the other three tensor network structures. This

is because, although the units with the strongest entanglement
are placed in the middle, the ordering of the sites in ChainX
does not follow the original site ordering of the model. This
misalignment typically leads to large entanglement entropy and
consequently a large error in MPS structures. In comparison,
TreeX is able to be mapped onto a one-dimensional topology
while preserving site ordering and more critically to distribute
entanglement entropy evenly across subtrees. ChainX cannot
achieve this balanced distribution simply by placing the most
entangled units in the middle. The contrast of the different
convergence rates highlights the importance of careful
structural design for achieving optimal computational
efficiency.

In order to gain deeper insight into the different
convergence rate of Chain, Tree, ChainX and TreeX, in
Figure 7 we analyze the time evolution of the von Neumann
entanglement entropy S for the four methods. The maximum S
across all virtual bonds in the corresponding tensor network
structure is reported. Since in this work we have employed a

Figure 6. Performance of ChainX and TreeX structure. (a) The extrapolated ⟨n̂LEd1
⟩ dynamics from Chain, Tree, ChainX and TreeX calculations;

(b) The convergence behavior with respect to the bond dimension M for Chain, Tree, ChainX and TreeX. The error in (a) is measured by the
time-average deviations of ⟨n̂LEd1

⟩ from t = 150 to 200 fs from the extrapolated ⟨n̂LEd1
⟩ reference values.

Figure 7. Time evolution of the maximum von Neumann entanglement entropy for (a) Chain, (b) Tree (c) ChainX and (d) TreeX structures. The
entropy values represent the maxima across all virtual bonds in each network architecture.
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uniform bond dimension distribution, the maximum S
determines the error of the calculation. As shown in eq 15,
the tensor network compression error at a particular bond is
the sum of the square of the discarded singular values. Thus,
the bond with the largest S will have the largest absolute
compression error when a fixed bond dimension is applied
uniformly. In other words, this single largest error becomes the
dominant and limiting source of inaccuracy for the entire
calculation and determines its overall error.

The spatial distribution of maximum S in the tensor network
varies between methods. For Chain, the maximum S appears
between the local vibrations of OT1 and OT3 molecules, which
is shown in Figure C2. For Tree, the maximum S is associated
with the bond that connects the local vibrations modes of
OT1−OT7 to the rest of the system, which is show in Figure 5.
For ChainX, the maximum S appears between the R mode and
the OT1 unit, which aligns with the design principle. For
TreeX, the maximum S is designed to appear in the top layer.

In Figure 7, we first find that the convergence of maximum S
is much slower than the convergence of the occupation for all
methods. Thus, the maximum S may serve as a strict criteria
for numerical convergence. Additionally, while Tree initially
shows slower entanglement growth than Chain, its entangle-
ment increases rapidly thereafter, ultimately reaching com-
parable values by t = 200 fs. ChainX shows the highest
entanglement entropy, which leads to the larger error observed
in Figure 6b. In contrast, TreeX shows the slowest
entanglement growth. As a result, when t = 200 fs, TreeX
has the smallest maxbondsS across the four methods. This
suppressed entanglement accumulation directly correlates with
TreeX’s superior accuracy shown in Figure 6b.

Lastly, we discuss the efficiency of the algorithms. For the
same bond dimension M, the MPS structures require less
memory, which allows us to perform M = 512 calculation with
Chain/ChainX. Both Tree and TreeX have similar memory
requirement. However, the TTNO of Tree has a larger bond
dimension, leading to larger intermediate tensors and a higher
computational cost compared to TreeX. MPS calculation with
M = 256 and M = 512 and TreeX calculations with M = 256
are carried out on a V100 (32GB) GPU card in combination
with 4 cores of an AMD EPYC 74F3 CPU.82 Tree calculation
with M = 256 is carried out on a A100 (80GB) GPU card in
combination with Intel Xeon Gold 6226R CPU, due to its
higher memory consumption. The thermal design power
(TDP) for the AMD EPYC 74F3 CPU and the NVIDIA GPUs
is rated at around 300 W. The TDP value represents their
maximum thermal output under full load. Our calculations
account for a more typical usage scenario where only one-sixth
of the CPU cores are active, and GPU utilization averages 50%.
Based on this reduced load, we estimate the total power
consumption for this workload to be approximately 200 W.
Figure 8 presents the trade-off between the average error and
computational efficiency for Chain, Tree, ChainX and TreeX.
The wall times reported here include the time evolution and
the calculation of all physical observables, such as the bond
singular values and the RDMs of all degrees of freedom in the
system. As shown, the TreeX structure demonstrates the best
balance between accuracy and computational cost, achieving
the smallest average error while requiring less wall time. Chain
is more efficient than Tree, because of its lower computational
scaling. This figure highlights that tree structure design is
crucial to the success of the tree tensor network algorithms.

4. CONCLUSION AND OUTLOOK
In this work, we develop from a previous work and perform
systematic benchmark of MPS and TTNS for a challenging
exciton dissociation model. Using the TDVP-PS algorithm,
where MPS time evolution corresponds to TD-DMRG and
TTNS to PSI-ML-MCTDH, we demonstrate exceptional
agreement between MPS and TTNS, with an average
difference in electronic state occupancy of only 0.001. This
is achieved through: (1) the use of sufficiently large bond
dimensions (M = 512 for MPS and M = 256 for TTNS), which
alone reduces the difference to ∼0.005; (2) the development
of an optimized tree structure termed TreeX that shows
superior convergence properties. The exceptional efficiency of
TreeX is demonstrated by its achievement of an average
occupancy error <0.005 with only M = 32 bases. We note that
TreeX is not designed a priori, but rather based on the
calculated entanglement entropy from TTNS simulations.
While we also designed a similar new MPS structure termed
ChainX, the error was higher in comparison. Our results show
that the structural flexibility of the tree, compared to a linear
topology, offers more flexibility to reduce entanglement
entropy and enhance computational efficiency.

Our calculation confirms that both MPS and TTNS are
numerically exact ansaẗze that are capable of achieving high
accuracy for the simulation of complex chemical systems with
moderate cost. We hope the high-accuracy benchmark data
presented here will facilitate future developments of not only
tensor network algorithms but also other types of quantum
dynamics methods. At the same time, our study highlights
practical challenges in tensor network simulations. High-
quality results require extensive convergence tests for
parameters such as bond dimension and tree structures. To
overcome this, we need new descriptors to quantify errors in
time-evolved observables, as well as algorithms that can
efficiently and reliably generate near-optimal tensor network
structures without extensive trial calculations. We expect
continued cross-fertilization between TD-DMRG and ML-
MCTDH will enable the simulation of even more challenging
quantum systems with unprecedented accuracy and efficiency.

■ APPENDIX A MODEL PARAMETERS
In this section, we list the specific model parameters for the
exciton dissociation model studied in this work. All parameters
are directly adopted from the reference work.50 In Table A1 we
list the on-site energy of the 13 CS states, used in eq 3. In
Table A2 we list the frequencies and coupling constants of the
F modes and the OT local vibrational modes.

Figure 8. Average error defined in eq 19 versus the wall time per step
for Chain, Tree, ChainX and TreeX.
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■ APPENDIX B CONVERGENCE BENCHMARK
In this section, we present a convergence analysis of both the
bond dimension and the time step. The dynamics of ⟨n̂LEd1

⟩
with different bond dimension M is shown in Figure B1. While
all four tensor network structures appear converged at the full
scale in the first column, closer inspection of specific time
windows reveals differences. The 50−100 fs region in the
second column shows satisfactory convergence for large M
values across all methods. However, in the long time limit (t =
150−200, third column), Chain, Tree and ChainX exhibit
significant convergence challenges, while TreeX maintains
stable convergence behavior. From Figure B1c,f, we see that if
M is not sufficiently large, Chain consistenly overestimates the
occupation, while Tree tends to underestimate the occupation.
These opposing trends explain the discrepancies observed
between the two methods when small bond dimensions are
used. Nonetheless, Chain and Tree are converging to the same
result as M increases. The convergence patterns support our
extrapolation approach shown in Figure 4.

In Figure B2 we show the effect of the time step on the
dynamics obtained by Tree with M = 128. We find that using a
time step of 4 fs will leads to an error smaller than the
estimated uncertainty caused by insufficient bond dimension.
Thus, for the benchmark data reported in this work in principle
we can use 4 fs as the time step. However, as shown in Figure
B2b, using such large time step will cause sparse data points
and discontinuous dynamics. Thus, in the main text we choose
to employ 1 fs as the time step for denser data points.

We note that the large time step does not cause large error
despite the high frequency modes in the model. This is because
these high frequency modes shows negligible entanglement
entropy with the rest of the system, as shown in Figure 5.

Therefore, one may take the mean-field picture to deal with
these high frequency modes. In other words, their fast motion
constitudes a mean-field to the dynamics of the electron. For
the purpose of calculating the electron occupations, it is not
necessary to exactly track the high-frequency nuclear motion.
On the hand hand, the projector-splitting integrator
empoloyed in this work features sequential update of each
node in the tensor network. The integrator is then able to
adaptively perform the time evolution of each node with
different number of steps (the number of Krylov vectors in
matrix exponential). The symplectic feature of the integrator
also helps to ensure the numerical accuracy at long time scale.
In our previous work, we have found that TDVP-PS tolerant
exceptionally long time step in MPS simulations.82

■ APPENDIX C REPRODUCING THE REFERENCE
Using our Renormalizer implementation, we successfully
reproduce the difference between Chain and Tree structures
reported in the reference work.50 Figure C1 demonstrates that
our reproduced results and the original data points extracted
from the reference work are in excellent agreement. This
validation confirms both the reliability of our implementation
and the reproducibility of the earlier findings. Besides, from
Figure C1b, the Tree simulation in the reference paper agrees
better with the results in this work compared with the Chain
simulation.

The key factor enabling this reproduction is the bond
dimension setup. While maintaining nearly identical computa-
tional parameters to those used in our main text, where we
achieved 10% relative difference and 0.005 absolute difference,
we specifically matched the bond dimension of the reference
work. More specifically, for MPS calculation, starting from a
Hartree product state where M = 1, we perform 2-site TDVP-
PS for a few steps, with a very small singular value truncation
threshold of 10−6.5. While this procedure allows rapid growth
of the bond dimension, it creates an uneven distribution where
regions of initially strong entanglement develop large bond
dimensions while other areas remain constrained. When the
maximum bond dimension is above a target value, which in
this case is 250, the time evolution algorithm is switched to 1-
site TDVP-PS, and the time evolution proceeds with fixed
bond dimension. The transition happens at very early stages of
the time evolution (t < 20 fs). A comparison of the bond
dimension obtained using this approach and the fixed uniform
bond dimension employed in this work is included in Figure
C2a. The direct result of this setup is that the region where the
initial entanglement is small has constrained bond dimension
throughout the time evolution. In Figure C2b, we plot the
accurate bipartite entanglement entropy at each bond using
our uniform bond dimension. We can see that the region
where initially has small entanglement developes moderate
amount of entanglement entropy at later times. The small
bond dimension in this region creates persistent bottlenecks in
the calculation and limits the overall accuracy regardless of
maximum bond dimension elsewhere. Increasing the maximum
bond dimension has very slow convergence because the
maximum bond dimension is increasing much faster over time
than the bond dimension in the low-entanglement region.

On the other hand, for the Tree structure calculation, we
replicate the tree structure and bond dimension reported in the
reference work, including its maximum bond dimension of 40.
As shown in Figure 4, M = 40 will underestimate the
occupation in the long times, which is consistent with the

Table A1. On-Site Energy of the CS States

n ϵnCS (meV)

1 0.0
2 33.6
3 47.4
4 56.0
5 61.8
6 65.7
7 68.4
8 70.0
9 70.9
10 71.2
11 71.1
12 70.5
13 69.5

Table A2. Frequencies and Coupling Constants of the F
Modes and the OT Local Vibrational Modesa

l ωF,l ωOT,l gF,l gOT,l gOT,l′
1 200.025 401.283 45.246 7.017 4.035
2 184.269 397.773 65.701 −0.077 2.921
3 177.853 182.714 −40.280 −67.849 −129.712
4 141.11 178.531 −17.511 57.668 46.885
5 93.952 134.550 28.026 −40.145 −32.908
6 79.933 111.848 −13.629 11.68 36.591
7 55.892 42.621 −23.732 −10.784 −20.211
8 33.264 18.316 9.86 −12.309 −7.77

aThe units are meV.
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underestimation in Figure C1a. The combined inaccuracies
from both MPS and TTNS implementations account for the
observed discrepancy in the reference work.

To investigate the potential effect of methodological
differences beyond bond dimension, we examine two addi-
tional factors from the reference study. The first is the use of
different time evolution schemes. The reference work employs

the PS method for MPS and the VMF65 scheme for TTNS, as
VMF is the traditional integrator for ML-MCTDH. To
investigate their effect, we perform further benchmarks based
on the Tree structure and bond dimension in Figure C3. We
find that the VMF and PS schemes show excellent agreement,
with ∼2% relative difference (0.001 absolute difference), which
is consistent with our previous MPS benchmarks.82 Besides, in

Figure B1. Convergence analysis of (a−c) Chain, (d−f) Tree, (g−i) ChainX and (j−l) TreeX. In the first, second and third column the full
dynamics, the dynamics from 50 to 100 fs, and the dynamics from 150 to 200 fs are shown, respectively.

Figure B2. Difference in the ⟨n̂LEd1
⟩ dynamics calculated by Tree with increasing time step. (a) The full dynamics from 0 to 200 fs. (b) The

dynamics at the long time limit, i.e., from 150 to 200 fs. (c) The relative difference between the ⟨n̂LEd1
⟩ values, using values obtained by a time step

of 1 fs as the reference.
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the reference work, the harmonic oscillator eigenbasis and
DVR basis are employed in MPS and TTNS calculation,
respectively. We perform VMF time evolution with sine DVR
basis65 and the results are also included in Figure C3. We find
that the two factors collectively contribute to 3% of relative
difference (0.002 of absolute difference). In C4Figure C4 we

show the effect of different regularization parameter ε. In our

VMF integration the density matrix ρ is regularized using the

following equation

= + { }exp / (20)

Figure C1. Reproduction of the difference between MPS and TTNS in the reference paper.50 (a) The dynamics of ⟨n̂LEd1
⟩ calculated using Chain

and Tree. (b) The dynamics at the long time limit, i.e., from 150 to 200 fs. (c) The relative difference between Chain and Tree. “Reproduce”
represents the results calculated by us. “Ref” represents the data extracted from the reference paper. “This work” represents the converged dynamics
reported in the main text.

Figure C2. Bond dimension and entanglement entropy analysis for Chain calculations. (a) Comparison of bond dimension distributions between
this work and the implementation by expanding bond dimension using 2-site TDVP-PS. (b) The numerically exact bond entanglement entropy
profile. In (a), “this work” means the bond dimension distribution employed in the calculations in the main text. And “Reproduce” means the bond
dimension distribution employed in Figure C1.

Figure C3. Effect of time evolution scheme and primitive basis on the time evolution of ⟨LE1⟩. (a) The full dynamics from 0 to 200 fs. (b) The
dynamics from 150 to 200 fs. (c) The relative difference between the ⟨n̂LEd1

⟩ values, using PS values as the reference.
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where by default ε = 10−10. As shown in in Figure C4, using a
small ε will lead to larger error in the initial dynamics. In the
long time limit, the difference caused by ε is smaller than 6%
(0.003 of absolute difference). We conclude that neither factor
significantly contributes to the discrepancy observed in the
reference work, and that bond dimension remains the primary
determinant of accuracy in these calculations.

■ APPENDIX D EXTRAPOLATED DYNAMICS
In this section, we show the extrapolated dynamics of all 26
electronic states in Figure D1. The results by Chain, Tree,
ChainX, and TreeX are all shown in each panel. The excellent
agreement across all states validates the consistency of MPS
and TTNS, with most cases showing nearly indistinguishable
curves between methods. While minor deviations appear for
certain states, such as in Figure D1m, these occur primarily
where the occupation is small in magnitude. For example, in
Figure D1m, LE7 shows visible difference between Tree and
TreeX, yet the absolute difference is approximately 0.004.
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